

Advanced Cyber–Threat Intelligence, Detection, and Mitigation

Platform for a Trusted Internet of Things

Grant Agreement: 786698

D2.5 Threat actors’ attack
strategies

Work Package 2: Cyber–threat landscape and

end–user requirements

Document Dissemination Level

PU Public X

CO Confidential, only for members of the Consortium (including the Commission Services)

Document Due Date: 31/12/2018

Document Submission Date: 31/12/2018

Co–funded by the Horizon 2020 Framework Programme of the European Union

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 2

Document Information

Deliverable number: D2.5

Deliverable title: Threat actors’ attack strategies

Deliverable version: 1.00

Work Package number: WP2

Work Package title: Cyber–threat landscape and end–user requirements

Due Date of delivery: 31/12/2018

Actual date of delivery: 31/12/2018

Dissemination level: PU

Editor(s): Konstantinos Limniotis (UOP)

Contributor(s): Nicholas Kolokotronis, Costas Vassilakis, Nicholas Kalouptsidis,

Konstantinos Limniotis, Konstantinos Ntemos, Christos–Minas

Mathas, Konstantinos–Panagiotis Grammatikakis (UOP)

Dimitris Kavallieros, Giovana Bilali (KEMEA)

Stavros Shiaeles, Bogdan Ghita, Julian Ludlow, Salam Ketab,

Hussam Mohammed, Abdulrahman Alruban (CSCAN)

Reviewer(s): Pavué Clément (SCORECHAIN)

Michele Simioli (MATHEMA)

Project name: Advanced Cyber–Threat Intelligence, Detection, and Mitigation

Platform for a Trusted Internet of Things

Project Acronym Cyber–Trust

Project starting date: 01/05/2018

Project duration: 36 months

Rights: Cyber–Trust Consortium

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 3

Version History

Version Date Beneficiary Description

0.10 22/10/2018 UOP Proposed deliverable’s
outline

0.15 06/11/2018 UOP Initial text in Section 5 has

been written

0.20 11/11/2018 UOP First draft of Section 4

0.25 30/11/2018 UOP First draft of Section 5

0.30 07/12/2018 UOP First draft of Section 3

0.35 09/12/2018 UOP New material added,

presentation

enhancements, and

structural changes

0.40 14/12/2018 UOP First draft of Section 1

0.45 15/12/2018 CSCAN First draft of Section 8

0.50 17/12/2018 KEMEA First draft of Section 7

0.55 18/12/2018 UOP First draft of Section 6

0.60 18/12/2018 UOP First draft of Section 2

0.65 19/12/2018 UOP Final draft of deliverable

sent for review

1.00 30/12/2018 UOP Accommodation of review

comments and other minor

corrections

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 4

Acronyms

ACRONYM EXPLANATION

ACT Attack Countermeasure Tree

ADT Attack Defense Tree

AFT Attack Fault Tree

AG Attack graph

AIV Annual Infrastructure Value

ALE Annual Loss Expectancy

API Application Programming Interface

ARC Annual Response Cost

ART Attack response Tree

AT Attack tree

BAG Bayesian Attack Graph

CAG Core Attack Graph

CMS Content Management System

CoAG Conservative Attack Graph

CPE Common Platform Enumeration

CSV Comma–Separated Values

CUI Character User Interface

CVE Common Vulnerabilities and Exposures

CVRF Common Vulnerability Reporting Format

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DAG Directed Acyclic Graph

DDoS Distributed Denial of Service

DNS Domain Name Server

DT Defense Tree

EDG Exploit Dependency Graph

eVDB enriched Vulnerability Data Base

GCF Greenbone Community Feed

GPL General Public License

GPO Group Policy Object

GPRS General Packet Radio Service

GPS Global Positioning System

GrSM Graphical Security Model

GSF Greenbone Security Feed

HARM Hierarchical Attack Representation Model

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IEC International Electrotechnical Commission

iIRS intelligent Intrusion Response System

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 5

IoT Internet of Things

IPS Intrusion Prevention System

ISO International Standards Organization

LGA Logical Attack Graph

NASL Nessus Attack Scripting Language

NCCIC National Cybersecurity and Communications Integration Center

NFC Near Field Communication

NGFW Next Generation FireWall

NIST National Institute of Standards and Technology

NSE Nmap Scripting Engine

NVD National Vulnerability Database

OS Operating System

OSINT Open–Source INTelligence

OVAL Open Vulnerability and Assessment Management

OWAT Ordered Weighted Averaging Tree

PAG Personalized Attack Graph

PCAP Packet Capture

PT Protection Tree

RDF Resource Description Framework

RM Risk Mitigation

SCAP Security Content Automation Protocol

SCT Security Compliance Toolkit

SDN Software Defined Network

SNMP Simple Network Management Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

TMS Trust Management Service

TVA Topological Vulnerability Analysis

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VDB Vulnerability Data Base

VM Virtual Machine

VPN Virtual Private Network

XML eXtensible Markup Language

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 6

Table of Contents

1. Introduction ... 13

1.1 Purpose of the document .. 13

1.2 Relations to other activities in the project ... 14

1.3 Structure of the document .. 14

2. Methodology .. 15

3. Information acquisition ... 18

3.1 Network topology and host connectivity ... 18

3.1.1 List of tools considered ... 20

3.1.1.1 Nmap .. 20

3.1.1.2 Angry IP scanner .. 21

3.1.1.3 Unicornscan ... 22

3.1.1.4 Dipiscan .. 22

3.1.1.5 Masscan ... 23

3.1.1.6 Scanrand .. 23

3.1.1.7 Zmap .. 23

3.1.1.8 NetCrunch tools ... 24

3.1.1.9 MyNet toolset .. 24

3.1.1.10 LanTopoLog .. 25

3.1.1.11 Spiceworks NM .. 25

3.1.1.12 NetworkMiner.. 25

3.1.1.13 PcapViz ... 26

3.1.1.14 Skydive ... 26

3.1.1.15 Maltego .. 27

3.1.1.16 Netglub .. 27

3.1.1.17 Dnsdumpster.com.. 28

3.1.1.18 Spiderfoot .. 28

3.1.1.19 ReconDog ... 29

3.1.2 Comparative analysis .. 29

3.2 Vulnerability scanning .. 32

3.2.1 Tools and scanning taxonomies .. 32

3.2.2 Comparison criteria choice ... 33

3.2.3 List of tools considered ... 35

3.2.3.1 OpenVAS .. 35

3.2.3.2 Nessus .. 37

3.2.3.3 Nikto ... 38

3.2.3.4 Arachni ... 39

3.2.3.5 w3af ... 41

3.2.3.6 Vega ... 42

3.2.4 Comparative analysis .. 43

3.3 Exploit intelligence acquisition .. 45

3.3.1 Pre/post–condition extraction .. 45

3.3.1.1 Aksu et al. (2018) ... 45

3.3.1.2 Gosh et al. (2015) ... 46

3.3.1.3 Weerawardhana et al. (2015) .. 46

3.3.1.4 Joshi et al. (2013) ... 47

3.3.1.5 Roschke et al. (2009) .. 47

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 7

3.3.2 Relations with CWE ... 48

3.3.3 Vulnerability intelligence sources ... 51

3.4 Information acquisition for attack mitigation .. 55

3.4.1 Product and vendor–oriented security advisories .. 55

3.4.2 Generic security advisories and vulnerability databases .. 57

3.4.3 Generic weaknesses information sources... 62

4. Graphical security models ... 64

4.1 Methodology .. 64

4.1.1 Criterion I: Cyber–Trust application areas .. 64

4.1.2 Criterion II: GrSM interactions with Cyber–Trust modules and services 64

4.1.3 Criterion III: scalability and generation ... 64

4.2 Graphical security models’ classification ... 65

4.2.1 Tree–based models ... 65

4.2.1.1 Attack tree ... 66

4.2.1.2 Defense tree .. 66

4.2.1.3 Ordered weighted averaging tree ... 66

4.2.1.4 Protection tree ... 67

4.2.1.5 Attack response tree .. 67

4.2.1.6 Attack countermeasure tree .. 67

4.2.1.7 Attack defense tree .. 68

4.2.1.8 Attack fault tree ... 69

4.2.2 Graph–based models .. 69

4.2.2.1 Attack graphs ... 70

4.2.2.2 Exploit dependency graph ... 71

4.2.2.3 Bayesian attack graph .. 71

4.2.2.4 Logical attack graph ... 71

4.2.2.5 Multiple prerequisite attack graph .. 72

4.2.2.6 Compromise graph .. 72

4.2.2.7 Hierarchical attack graph ... 72

4.2.2.8 Countermeasure graph .. 73

4.2.2.9 Attack execution graph .. 74

4.2.2.10 Attack scenario graph .. 74

4.2.2.11 Conservative attack graph ... 74

4.2.2.12 Security argument graph ... 75

4.2.2.13 Incremental flow graph.. 76

4.2.2.14 Core attack graph ... 76

4.3 Comparative analysis ... 76

5. Attack graph generation .. 80

5.1 Tools for generating attack graphs .. 80

5.1.1 TVA .. 80

5.1.2 NetSPA ... 82

5.1.3 Mulval .. 82

5.1.4 Cygraph ... 83

5.1.5 CyberSAGE ... 83

5.1.6 ADVISE ... 83

5.1.7 Naggen .. 83

5.1.8 Evaluation – Discussion ... 84

5.2 Attack graphs for Cyber–Trust ... 85

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 8

6. Risk management and attack mitigation .. 87

6.1 Static (typical) risk management .. 87

6.1.1 Risk assessment ... 87

6.1.2 Mitigation strategy .. 89

6.2 Dynamic risk management on graphical models ... 89

6.2.1 Risk assessment ... 90

6.2.1.1 Setting up the scene .. 90

6.2.1.2 Dynamic risk modelling .. 91

6.2.2 Mitigation strategy .. 92

6.3 Mitigation actions .. 93

6.3.1 Mitigation actions classification .. 94

6.3.1.1 High–level taxonomy ... 94

6.3.1.2 Proactive actions .. 95

6.3.1.3 Reactive actions ... 97

6.3.2 Tools for enforcing mitigation ... 99

6.3.2.1 Snort ... 100

6.3.2.2 Suricata .. 100

6.3.2.3 Bro (aka Zeek) .. 100

6.3.2.4 Sagan .. 101

6.3.2.5 Bastille .. 101

6.3.2.6 CIS–CAT .. 101

6.3.2.7 Docker Bench for Security ... 101

6.3.2.8 Jshielder ... 101

6.3.2.9 Lynis ... 102

6.3.2.10 Microsoft attack surface analyzer.. 102

6.3.2.11 Microsoft security compliance toolkit ... 102

6.3.2.12 OpenSCAP .. 102

6.3.2.13 Zeus .. 102

7. Cyber–attackers’ profiling ... 103

7.1 Taxonomy of attackers ... 103

7.2 Attackers modelling and related metrics ... 104

7.3 Resources and vulnerability markets ... 106

7.3.1 Regulated markets’ value .. 107

7.3.2 Unregulated markets’ value .. 108

8. Cyber–Trust related scenarios ... 111

8.1 Typical CT domain models ... 111

8.1.1 Smart home domain .. 111

8.1.2 Mobile device domain ... 112

8.2 Typical attackers’ strategies ... 113

8.2.1 Smart home domain .. 113

8.2.2 Common cyber–security threats and attacks against smart home devices 114

8.2.2.1 Botnets ... 114

8.2.2.2 Man–In–the–middle .. 114

8.2.2.3 Data and identity theft... 114

8.2.2.4 Social engineering .. 114

8.2.2.5 Denial of service attack .. 115

8.2.2.6 Device hijacking ... 115

8.2.3 Mobile device domain ... 115

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 9

8.2.4 Common cyber security threats and attacks against mobile devices 115

8.2.4.1 Zero–day vulnerabilities .. 115

8.2.4.2 Malware and spyware ... 116

8.2.4.3 Botnets ... 117

8.2.4.4 Keylogger ... 117

8.2.4.5 Wireless attack ... 117

8.3 Simulation environment .. 117

9. Conclusions... 122

References ... 123

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 10

List of Figures

Figure 2.1. Generation of threat actors’ attack strategies and application in the mitigation process 15

Figure 4.1. Example of an attack tree [134] .. 66

Figure 4.2. An example of an attack tree (left) and the corresponding defense tree (right) [16] 66

Figure 4.3. An example of an attack tree (left) and the corresponding protection tree (right) [26] 67

Figure 4.4. Examples of attack countermeasure trees with: (a) one attack event, (b) one attack and one

detection event, (c) one attack and multiple detection events, (d) one attack, one detection and one

mitigation event, (e) multiple detection and multiple mitigation .. 68

Figure 4.5. Example of an ADT for an attack on a bank account [63] ... 69

Figure 4.6. Example of an attack graph and the generation process [112] .. 70

Figure 4.7. Example of (a) full graph, (b) predictive graph and (c) multiple–prerequisite graph [48] 72

Figure 4.8. Example of a countermeasure graph [11] ... 73

Figure 4.9. Example of an attack execution graph [72] ... 74

Figure 4.10. Example of a conservative attack graph [157] .. 75

Figure 4.11. The mission planning system associated with the CoAG of Figure 4.10 [157] 75

Figure 4.12. Example flow and construction of the corresponding flow graph [25] 76

Figure 5.1. TVA attack graph visualization .. 81

Figure 6.1. CVSS metrics and equations .. 90

Figure 6.2. Example BAG illustrating probability computations [114] .. 92

Figure 6.3. Attack graph–based countermeasure selection .. 93

Figure 7.1: Vulnerability markets and attackers ... 107

Figure 7.2: Zerodium mobile devices 0–day exploits price list.. 108

Figure 8.1. A smart home’s typical network setup .. 112

Figure 8.2. Typical Attacker’s Strategies on Smart Home [116] .. 113

Figure 8.3. Life–span of a typical zero–day vulnerability [141] ... 116

Figure 8.4. Mininet GUI ... 118

Figure 8.5. GNS3 GUI ... 119

Figure 8.6. Docker architecture ... 119

Figure 8.7. Container networking model ... 120

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 11

List of Tables

Table 2.1. Mapping of processes to Cyber–Trust’s asset–class actors .. 16

Table 3.1. Features against which network topology and host connectivity tools are compared 19

Table 3.2. Features against which reconnaissance tools are compared ... 19

Table 3.3. Network topology and host connectivity tools comparison (1/2) .. 29

Table 3.4. Network topology and host connectivity tools comparison (2/2) .. 30

Table 3.5. Reconnaissance tools comparison .. 31

Table 3.6. Comparison criteria of application/vulnerability scanning tools .. 34

Table 3.7. Pre/post–conditions used by [4] ... 45

Table 3.8. Pre/post–conditions used by [30] ... 46

Table 3.9. Relevant fields of vulnerability information in [123] .. 47

Table 3.10. Pre/post–conditions used by [123]... 47

Table 3.11. CWE entry fields .. 49

Table 3.12. Top–level entries included in the Research Concepts View (CWE–1000) 49

Table 3.13. Top–level entries included in the Development Concepts View (CWE–699) 50

Table 3.14. Top–level entries included in the architectural concepts view (CWE–1008) 50

Table 3.15. Comparative analysis of VDBs (1/3).. 51

Table 3.16. Comparative analysis of VDBs (2/3).. 52

Table 3.17. Comparative analysis of VDBs (3/3).. 53

Table 3.18. Indicative list of security advisory databases ... 56

Table 3.19. Mitigation provisions for different vulnerability databases ... 61

Table 4.1. Tree–based graphical security models ... 65

Table 4.2. Graph–based graphical security models ... 69

Table 4.3. Evaluation of GrSMs ... 77

Table 5.1. Software tools for developing attack graphs .. 84

Table 6.1. Magnitude of impact definitions [93] ... 88

Table 6.2. Traditional risk matrix for risk determination [93] ... 88

Table 6.3. Classes of risk mitigation actions [99] ... 94

Table 6.4. Classification of proactive risk mitigation actions .. 95

Table 6.5. Classification of reactive risk mitigation actions .. 98

Table 7.1: Threat actors and their involvement/capability level .. 105

Table 7.2: CVSS metrics and attacker's profile .. 105

Table 7.3: Distribution of all vulnerabilities by CVSS scores.. 106

Table 7.4: Price of exploit kits over time ... 108

Table 7.5: Zero–day sales [81] ... 109

Table 8.1. High–level comparison of simulation environments .. 120

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 12

Executive summary

This report focuses on providing the necessary information and methodologies for modelling the possible

attack strategies used by threat actors of particular profiles in selected types of cyber–attacks targeting at

devices, networks and critical information infrastructures (CIIs). Since the ecosystem of IoT devices is highly

heterogenous, based on devices with different characteristics and processing operations, a systematic

approach to model attack strategies of several forms – taking also into account the various capabilities of the

potential attackers – becomes prerequisite for the process of adopting and evaluating the proper mitigation

measures with respect to the relevant risks.

Towards efficiently modelling the attack strategies, there exist numerous applications that can be used to

acquire the necessary information, whilst there are also several risk management approaches. Moreover, the

so–called Graphical Security Models constitute important primitives for efficiently representing the various

attack strategies; they are based on input information (i.e. software weaknesses, misconfigurations, network

connectivity etc.) to identify – via employing appropriate algorithms – the possible attack steps that can be

executed, as well as the relevant consequence. Appropriate Graphical Security Models may also allow for

developing a systematic risk management, thus resulting in appropriate mitigation measures.

The present deliverable surveys all the available tools and methodologies for a concrete modelling of attack

strategies, performing a comparative study in terms of well–defined criteria. These tools and methodologies

include: i) tools for information acquisition (network topology, host connectivity, vulnerabilities), ii)

description of graphical security models, iii) methods for feeding these models with the information

obtained, iv) tools and algorithms for building and utilizing such models, v) risk management approaches, as

well as vi) tools for enforcing mitigation. By these means, a systematic approach to efficiently model the

possible attack strategies towards adopting appropriate defensive actions in relation with the likelihood of

the attacks is being constructed. Practical realistic examples in the framework of the Cyber–Trust use cases

are also described, whilst relevant simulation environments are also discussed. The output of this deliverable,

based on the aforementioned analysis, is the description of the relevant approach that will be followed in

the framework of the Cyber–Trust project.

The deliverable provides a thorough analysis of tools and methods for the efficient modelling of attacker’s
strategies in the context of Cyber–Trust; it is therefore quite technical by nature. We believe that readers

with a technical background will find the presentation quite comprehensive and the analysis accurate and

complete. Non-technical readers might have to skip more technical parts, especially during the first reading.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 13

1. Introduction
The Cyber–Trust project aims to develop an innovative cyber–threat intelligence gathering, detection, and

mitigation platform to tackle the grand challenges towards securing the ecosystem of IoT devices. These

challenges rest with the special structure of IoT networks, that is heterogeneous connected devices –
computers, laptops, smartphones, and tablets, as well as, embedded devices and sensors – communicate via

exchanging large volumes of data. For example, security issues occur from embedded devices and other

legacy hardware, whose flawed design or their poor configuration allows the cyber–criminals to compromise

them in order to mount a successful attack. Therefore, it is of high importance to quickly detect, effectively

respond to and mitigate sophisticated cyber–attacks. To this goal, a systematic approach to model several

attack strategies becomes essential, so as to properly identify the possible weaknesses of the system, the

relevant risks in relation with the probability of an attack being successful, as well as the effective measures

that need to be taken towards addressing these security issues, both proactively and reactively; this is a non–
trivial task, taking into account the inherent complexity of the system, as well as the fact that new

vulnerabilities – and, thus, relevant risks – are constantly arising.

1.1 Purpose of the document

This document aims to provide a modelling of attackers and attack strategies with respect to potential cyber–
attacks targeting at any part of the Cyber–Trust platform (devices, networks and CIIs). Such a modelling will

in turn allow for developing appropriate mitigation measures, being either proactive or reactive.

More precisely, a proper identification of attackers’ profiles is essential in effectively addressing the security

threats, as well as in appropriately responding to cyber–attacks. Constructing attackers’ profiles rests with

considering the attacker as an entity with varying (depending on the profile) constrained resources, like

budget, tools, etc., aiming at exploiting vulnerabilities of any kind to maximize his profit (access level, degrade

QoS, etc.). Depending on the profile, some attack strategies will be more probable than others. Therefore,

the attack strategies should be modelled in a systematic way to confront them. To this end, there are known

tools to model the attack strategies – the most prominent being attack trees and attack graphs. These tools

allow for presenting the possible paths that an attacker of any kind might follow (possibly in an adaptive

manner) towards achieving his goals, whilst they also provide information on what needs to be done to

alleviate security issues.

Utilizing appropriate tools to model attack strategies necessitates collection of appropriate information,

including information on the network topology, on reachability amongst several nodes/devices (e.g.

information on firewall rules), as well as on devices/software vulnerabilities (which in turn is contingent on

system’s elements configuration). All these pieces of information should somehow feed the attack model,

which will be developed in terms of appropriately estimating and combining the so–called preconditions that

must be met with respect to exploiting specific vulnerabilities, as well as the so–called postconditions

corresponding to the consequences occurred in case that some attackers’ actions succeed. Moreover, such
modeling tools for attack strategies allow for performing a risk analysis on the overall system, taking into

account the relevant vulnerabilities and their corresponding probabilities of occurrence in conjunction with

their impact. These systematic procedures allow for properly identifying and evaluating possible weaknesses,

which in turn result in making proper decisions with regard to the security measures (mitigation steps) that

need to be implemented.

This document presents an overview of the available methods to model attack strategies, whilst it also

surveys the suitable software tools of any type that can be used within the framework of the Cyber–Trust

platform towards implementing such methods. In this context, typical scenarios of potential attack strategies

in the Cyber–Trust use cases are also given. The ultimate goal is to define a specific approach that will be

adopted in the case of the Cyber–Trust platform, taking into account its special characteristics and

requirements.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 14

1.2 Relations to other activities in the project

The computation of the cyber–attack security model, quantifying the impact of the corresponding mitigation

actions, is an essential building block towards achieving security of the overall Cyber–Trust platform; this is

also reflected in the Cyber–Trust use case scenarios in D2.3. To this end, this document will provide useful

input to task T5.3 that focuses on building an autonomous cyber–defense framework to cope with intelligent

cyber–attackers, as well as to tasks T6.2 and T6.3 which rest with developing techniques for detecting and

mitigating attacks. It should be also pointed out that, in practice, computing the cyber–attack security model

is strongly related with the cyber–threat landscape, which has been reviewed and analyzed in T2.1.

1.3 Structure of the document

This document consists of nine sections, including the current introductory section. More precisely, the

structure of the document is as follows:

▪ Section 2 briefly describes the overall methodology adopted in the present document towards

deriving the specific approaches that will be adopted in the process of efficiently modelling the

attackers and attack strategies with respect to potential cyber–attacks targeting at the Cyber–Trust

platform.

▪ Section 3 analyzes – in terms of evaluating their specific characteristics via a comparative study – the

available methods and tools to handle the appropriate information acquisition and exploitation

within the Cyber–Trust platform, so as to subsequently perform risk–based cyber threat mitigation.

▪ Section 4 provides an overview and a comparative study of the so–called Graphical Security Models

(GrSMs), which constitute a powerful tool for carrying out a systematic analysis of security

weaknesses of systems and evaluating potential protection measures against cyber–attackers.

▪ Section 5 describes the known software tools for exploiting attack graphs (which seem to be the

most prominent GrSM), in conjunction with their underlying algorithms, whilst a discussion on their

applicability in the context of the Cyber–Trust is also provided.

▪ Section 6 provides a comprehensive review on risk management and attack mitigation approaches,

focusing on the information systems level so as to address the needs of Cyber–Trust project. A

detailed study of the available mitigation tools is also given.

▪ Section 7 focuses on a classification of the attackers, describing for each case their relevant available

resources as well as the skills needed towards mounting cyber–attacks.

▪ Section 8 presents specific examples of attack strategies in the context of the Cyber–Trust use–cases,

to illustrate the importance and applicability of the previously described methodologies. These

examples are based on typical (realistic) network setups in the domains of interest, taking also into

account specific (potential) characteristics on the devices, OS and services, versions, etc. A discussion

on relevant simulation environments is also given.

▪ Finally, the main conclusions obtained are summarized in Section 9.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 15

2. Methodology

Securing a network from advanced cyber–attacks is a primary concern for IT security officers. Such attacks

have become more frequent and even more sophisticated due to the vast number of networked devices and

the security problems arising from embedded and legacy hardware. Even though the critical assets in a large

corporate or a small–office, home–office (SOHO) network (the latter being among the project’s application
domains) are protected by firewalls, vulnerabilities that exist in other devices (from which the critical assets

are reachable) can be used as pivot to launch multi–stage correlated attacks. This was already highlighted in

the description of task T2.4, where the need was identified for modeling cyber–attackers’ strategies via a

graphical security model (GrSM) like attack trees and attack graphs.

Figure 2.1. Generation of threat actors’ attack strategies and application in the mitigation process

enriched

vuln. DB

[A07]

network

assets DB

[A16]

mitigation

policy DB

[A04]

profile DB

[A17]

attacker
[P3]

information

acquisition

information

acquisition

§ vulnerabilities

§ assets’ criticality

§ topology

§ defense controls

§ assets’ criticality

§ sources

§ goals

§ profiles

§ TTPs

IoT network

other

VDBs

§ CVE, CVSS, …
§ exploits

attack GrSM

modelling

attack graph

generation

attack

model

GrSM

(reactive) iIRS

mitigation

(proactive) risk

assessment

GrSM

mitigation

enforcement

optimal

action

optimal

action

security gains/impact

game-theoretic method

security gains/impact

optimization method

surface, deep

and dark web

crawling

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 16

Many tools to detect open ports and vulnerabilities on a network’s devices exist but their limitation is that
they identify the vulnerabilities on a per host basis and thus they are unable to detect sophisticated

correlated attacks that usually occur in complex and dynamic environments as in the case of IoT. In addition,

not many automated penetration testing tools, which are employed in typical network security analysis, are

available for the active security/risk assessment of devices. Therefore, in order to get a holistic view of a

network’s health status, the security officers need to take these correlated attacks into consideration. The

approach considered in Cyber–Trust, i.e., to assess security via GrSMs requires a number of steps that are

illustrated in Figure 2.1 (where person–class and assets–class actors presented in deliverable D2.3 have been

included – see also Table 2.1 for a mapping of the illustrated processes to the project’s asset–class actors);

this involves the consideration of the following aspects:

▪ acquiring information about a network and devices’ vulnerabilities;

▪ modeling the different attack scenarios/paths that attackers’ might follow; and

▪ recommending mitigation actions in an intelligent way.

Table 2.1. Mapping of processes to Cyber–Trust’s asset–class actors

Processes Responsible asset–class actors

Information acquisition [A03] Monitoring service

[A16] Profiling service

Attack GrSM modeling &

Attack graph generation

[A05] Trust management system

[A13] Smart gateway iIRS application

[A14] Smart device iIRS application

Risk assessment [A05] Trust management system

iIRS mitigation [A13] Smart gateway iIRS application

[A14] Smart device iIRS application

Mitigation enforcement [A04] Cyber-defense service

Crawling [A10] Crawling service

Our goal is to leverage open–source scanning tools that gather vulnerability and other network information,

by using the project’s enriched vulnerability database (eVDB), and use them to generate attack graphs for

delivering advanced security assessment and intelligent mitigation strategies by relying on the intelligent

intrusion response system (iIRS). The mitigation actions that will be output from the iIRS will consider not only

the attack graph’s properties, but also the security gains and impacts that an action will have (in the long–
term) on a network’s security, operation, etc., and the predefined mitigation policies of organizations. The

block diagram illustrated in Figure 2.1 utilizes the following asset–class actors of Cyber–Trust (see D2.3):

▪ Information acquisition: refers to the collection of information related to a network that is stored in

the network architecture and assets repository [A16] and the profile database [A17].

Common methodologies probing hosts for open ports, identifying running services/applications, and

performing vulnerability assessment (i.e., determining, quantifying, and ranking vulnerabilities) will

be used to obtain information about list of hosts and services, host–to–host connectivity, sources of

attack, and goals of attack. Vulnerabilities will be correlated with eVDB [A07] to get an extended set

of information.

▪ Attack GrSM modeling: takes as input all the information collected in the previous step in order to

represent the cyber–attacks (realized by exploits) in a machine–readable form.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 17

This step is carried out by a module shared by the trust management system (TMS) [A05] and the

iIRS [A13, A14] since it is subsequently used for dynamic risk assessment and intelligent mitigation

respectively. The available exploits are commonly modeled as a set of preconditions (necessary for

triggering an exploit) and postconditions (the effects of an exploit’s execution).

▪ Attack graph generation: this is where the actual attack graph is generated by using specialized and

efficient algorithms able to determine all possible attack paths that an attacker might follow in order

to achieve his goals.

▪ Mitigation actions computation: such actions are computed in a proactive manner (by conducting

risk assessment) and reactive manner (via the iIRS) by considering the usual trade–off between the

level of security enhancements (gains) and the cost of mitigation (impact).

The output of this work will be the concrete process (and the tools to be used) for modeling attack strategies

that attackers of a profile might follow in the course of a cyber–attack as a response to defensive actions

taken. This deliverable will provide input to tasks T5.2–3 and T6.2–3 to help defining the defensive actions of

the IoT devices. In the subsequent sections, we describe these steps in more detail.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 18

3. Information acquisition

This section discusses the methods and tooling that are available to handle the different phases of

information acquisition and exploitation within the Cyber–Trust platform, so as to perform risk–based cyber

threat mitigation. More specifically:

1. The Cyber–Trust platform needs to have available the list of devices that are within its domain of

protection. To this end, tooling for identifying active devices within this domain is required. Besides

the plain identification of individual hosts and their addresses, a multitude of additional information

can be exploited to better assess vulnerability and threat levels, including network topology

(including subnets and device–to–subnet mapping), operating systems running on the devices and

their versions, host reachability, services running on the devices and their versions etc. Furthermore,

the risk level that a device is exposed to due to the existence of some threat is clearly dependent on

the potential of the threat agent to reach the vulnerabilities of the device. Taking into account that

routing rules or defense measures may preclude packets originating from a specific host to reach a

specific device or service, it is evident that host and service reachability is an additional piece of

information that must be collected. Section 3.1 reviews the available tools and their features.

2. Threat agents seek to exploit device vulnerabilities, to achieve breaches. Therefore, the Cyber–Trust

platform needs to maintain a comprehensive list of the vulnerabilities applicable to each device it

protects, in order to both take automated actions to disrupt attempts exploiting these vulnerabilities

and also raise appropriate awareness events for the device owners and Cyber–Trust platform

operators. The available tools for vulnerability scanning are examined in Section 3.2, and their

suitability for the context of the Cyber–Trust platform is assessed through a number of criteria.

3. In order for an exploit targeting a specific vulnerability to succeed, certain preconditions must

typically be met. This extends beyond simple network connectivity to the target device or reachability

to the target service, and may include aspects such as holding some level of privileges (to achieve

privilege elevation/escalation) or even knowledge (on the attacker side) regarding the services that

run on a device, their version and configuration. The conjugate to preconditions regarding attacks

are the postconditions, which correspond to the consequences inflicted when some attack succeeds.

When preconditions and postconditions are known, attacker strategies may be modeled using

graphical security models (see Section 4), which can be used to predict an attacker’s behavior and

effectively select and apply the proper defense and mitigation measures. However, insofar, the

identification of the pre– and post–conditions is a key bottleneck in the usability and effectiveness

of these graphical security models. Considering these aspects, ways to acquire intelligence regarding

exploits, particularly focusing on preconditions and postconditions are examined in Section 3.3.

4. Finally, the Cyber–Trust platform should be able to mitigate threats, both via proactive and reactive

measures. Information about the prominent reaction methods may be present in various sources,

including vendor product and patch pages, vulnerability databases etc. This information is typically

listed in free text, in non–standardized formats, and in varying levels of detail, thus, encumbering the

use of automated methods for its identification, extraction and use. Moreover, the application of

certain measures –especially reactive ones– may have effects on the value of the protected assets,

e.g., demote availability while limiting access to a service to guard against more grave effects. The

means to mitigate attacks and the issues to be tackled in this process are presented in Section 3.4.

3.1 Network topology and host connectivity

In this section a number of tools will be presented and compared based on a list of characteristics; these

include both functional capabilities related to gathering information about a target network and non–
functional ones, such as the license. The features are presented in Table 3.1 below.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 19

Table 3.1. Features against which network topology and host connectivity tools are compared

Feature Possible

values

Description

Active hosts X/– Identification of hosts that are active within the scanned

networks.

Reachability X/– Identification of hosts/services that are reachable within the

scanned networks.

Network topology X/– Extraction of network topology elements, focused on

segmentation of the network in subnets, presence of

interconnecting routerns and host membership in identified

subnets.

Existence of UI and/or

visualization capabilities

Textual

description

Description of the ways that the tool presents information to the

user and generally interfaces with users; command line and

graphical UIs are examined, as well as visualization capabilities.

Output formats Textual

description

Different ways that output formats can be stored (e.g. CSV, XML)

are examined.

OS and version X/– Whether the tool can determine the OS that enumerated hosts

run, as well as their versions.

Active ports X/– Whether the tool can identify the ports that are open in

enumerated hosts.

Services and versions X/– Whether the tool can determine the services listening to the

open ports, as well as their versions. Note that this goes beyond

simple lookup of port numbers in lists of well–known service port

assignments1; here we consider lookup of service or protocol

signatures within the data returned by the service in response to

suitably crafted requests.

Analysis of log files vs.

active scanning

Textual

description

This feature pertains to whether the tool needs to actively

monitor and analyze network traffic, or whether it can read and

process traffic data captured in respective files (typically pcap–
type files, but other file types can be used) resulting thus in an

offline analysis scheme.

License Textual

description

The license under which the software is made available; this

includes fees/price, the ability to create derivatives and the

license scheme that derivatives should/can be made available.

The marks ‘X’ and ‘–’ correspond to Yes and No respectively; if such information is not available, this is noted with ‘?’.

In addition to the above, a number of reconnaissance tools is presented, and the features of interest are

illustrated in Table 3.2.

Table 3.2. Features against which reconnaissance tools are compared

Feature Possible values Description

1 https://www.iana.org/assignments/service–names–port–numbers/service–names–port–numbers.xhtml

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 20

Domain and subdomain

names

X/– The capability of the tool to gather domain and subdomain

names associated with scan target.

IP addresses X/– The capability of the tool to gather a list of IP addresses

associated with scan target.

Virtual hosts X/– The capability of the tool to identify virtual hosts running on

web servers of the scan target.

Open ports, services,

banners

X/– Whether the tool is able to scan the target network for open

ports, identify the services listening to those ports and analyze

banners presented by the services.

Target spec Textual

description

The list of information items that the tool is able to gather.

License Textual

description

The license under which the software is made available; this

includes fees/price, the ability to create derivatives and the

license scheme that derivatives should/can be made available.

E–mail addresses and

peoples’ names

X/– Whether the tool is able to gather e–mail addresses and

names of persons associated with the scan target.

OS and version X/– Whether the tool can determine the OS that enumerated

hosts run, as well as their versions.

Applications and their

components

X/– Whether the tool can identify the applications used in the scan

target and their components.

UI types Desktop/

Command line/

Web–based

Description of the ways that the tool presents information to

the user and generally interfaces with users; command line,

desktop and web–based UIs are examined.

Output options Textual

description

Different ways that output formats can be stored (e.g. CSV,

XML) are examined.

The marks ‘X’ and ‘–’ correspond to Yes and No respectively; if such information is not available, this is noted with ‘?’.

3.1.1 List of tools considered

In the following sections a non–exhaustive list of eighteen available (known) tools is presented; these are the

network topology and host connectivity tools Nmap, Angry IP scanner, Unicornscan, Dipiscan, Masscan,

Scanrand, Zmap, NetCrunch tools, MyNet toolset, LanTopoLog, Spiceworks network mapping, Network-

Miner, PcapViz, and Skydive, along with the reconnaissance tools Maltego, Netglub, and Dnsdumpster.com.

3.1.1.1 Nmap

Nmap2, abbreviation of network mapper, is an open–source software for network discovery and security

testing. It is widely used from network administrators and penetration testers, but also from malicious users.

Its most common usage is port scanning; however, it has a lot more to offer than that.

Nmap sends specially crafted packets in order to determine which devices are active on the network, the

services and their version running on these devices, their operating system and what kind of security

measures are deployed in the network (IP/packets filtering, firewalls, etc.). Furthermore, nmap’s capabilities
are extended by the usage of the NSE (Nmap Scripting Engine), which is a collection of scripts for vulnerability

scanning, default credentials detection, advanced service detection and many more. All of the above are

2 https://nmap.org/

https://nmap.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 21

supported by a large community and updated regularly. NSE allows integration of custom–made scripts

written using the LUA language in the nmap functionality and can be plugged into the processes of network

discovery (to provide more information about existing network elements), version detection (for more

elaborate version identification), vulnerability detection (leveraging the basic capabilities bundled into nmap)

and backdoor detection (for more sophisticated detection of backdoors). NSE can be also used to perform

vulnerability exploitation, a feature typically used in penetration testing, although not envisioned to be used

in the context of Cyber–Trust.

Nmap was initially designed for Linux operating systems, but now it is available for many popular operating

systems including Windows and Mac OS X. As mentioned above, nmap can also perform vulnerability

scanning. For more information the user is referred to Section 3.2.

Active hosts X OS and version X

Reachability X Active ports X

Network topology X (both built–in and

nmapscan.pl3)

 Services and versions X

Existence of UI and/or

visualization capabilities

Zenmap4; nmapscan.pl

also includes

visualization

capabilities; fe3d5

visualizes network

structures collected by

nmap

 Analysis of log files vs.

active scanning

Active scanning,

Analysis of log files

(Zenmap)

Output formats Redirection of

standard output, XML,

Grepable, Script kiddie

 License GPL v2

3.1.1.2 Angry IP scanner

Angry IP Scanner6 is a widely used open–source and multi–platform network scanner. It is extensible through

plugins and very user–friendly. It is used by network administrators, penetration testers and so on. Its

capabilities include but are not limited to port scanning, active host discovery, host and domain name

detection and services/version detection. Furthermore, anyone with Java coding knowledge can extend its

functionality by writing plugins. Additionally, Angry IP Scanner offers various output formats. Finally, it is

considered to be really fast because of its multi–threaded approach, where a separate scanning thread is

created for each scanned IP address.

Active hosts X OS and version X

Reachability X Active ports X

Network topology X Services and versions X

Existence of UI and/or

visualization capabilities

X (Desktop UI) Analysis of log files vs.

active scanning

Active scanning

3 https://github.com/tedsluis/nmap/blob/master/nmapscan.pl
4 https://nmap.org/zenmap/
5 https://sourceforge.net/projects/fe3d/
6 https://angryip.org/

https://github.com/tedsluis/nmap/blob/master/nmapscan.pl
https://nmap.org/zenmap/
https://sourceforge.net/projects/fe3d/
https://angryip.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 22

Output formats CSV, TXT, XML, IP–Port

list

 License GPL v2

3.1.1.3 Unicornscan

Unicornscan7 is an information gathering and correlation engine built for and by members of the security

research and testing communities. It is an attempt at a User–land Distributed TCP/IP stack. Some abilities

include, asynchronous stateless TCP scanning/banner grabbing, asynchronous protocol–specific UDP

scanning and active and passive remote OS, application, and component identification by analyzing

responses. Additional functionalities include pcap file logging and filtering, relational database output,

custom module support and customized data–set views. It is available for Linux, BSD, Solaris and Mac OS X.

Active hosts X OS and version X

Reachability – Active ports X

Network topology – Services and versions X

Existence of UI and/or

visualization capabilities

– Analysis of log files vs.

active scanning

Active scanning

Output formats Stdout redirection to

log file, relational

database, pcap file

with received packets

 License GPL v2

3.1.1.4 Dipiscan

Dipiscan8 is a portable network scanner for Windows devices to run scans on their local area network to

detect network devices. For every device detected some information is given if available, some of the

information returned includes, NetBIOS name, DNS name, Domain, and OS. It has the ability to scan by IP

range, NetBIOS name and DNS name. Additionally, it provides a trace route functionality.

Active hosts X OS and version X

Reachability X Active ports –

Network topology X Services and versions X (NetBIOS only, when

user rights permit so,

through the Windows

service management

console)

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Active scanning

Output formats TXT License Freeware

7 https://tools.kali.org/information–gathering/unicornscan/
8 https://www.dipisoft.com/

https://tools.kali.org/information-gathering/unicornscan/
https://www.dipisoft.com/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 23

3.1.1.5 Masscan

Masscan9 is a port scanner and is considered to be the fastest one. Its regular output is similar to that of

nmap, but internally it uses asynchronous transmission. It also uses a custom TCP/IP stack.

Active hosts X OS and version –

Reachability – Active ports X

Network topology – Services and versions X

Existence of UI and/or

visualization capabilities

– Analysis of log files vs.

active scanning

Active scanning

Output formats XML, binary, grepable,

JSON, list

 License A–GPL–3

3.1.1.6 Scanrand

Scanrand10 is a network scanning tool designed to scan large networks very fast. It creates two completely

separate and disconnected processes; one that sends queries and one that receives responses and

reconstructs the original message from the returned content. Additionally, the receiving process doesn’t
retain state, it works by using a stateful protocol (TCP) in a stateless way.

Active hosts X OS and version –

Reachability X Active ports X

Network topology X (distance from

scanning host)

 Services and versions –

Existence of UI and/or

visualization capabilities

– Analysis of log files vs.

active scanning

Active scanning

Output formats Dump in SQL database License BSD original

3.1.1.7 Zmap

Zmap11 is an open–source network scanner developed as a faster alternative to nmap. It can conduct

Internet–wide network surveys efficiently, more specifically it is claimed to be able to scan the entire IPv4

address space in under 45 minutes. Zmap uses what is called cyclic multiplicative groups, which allows it to

scan roughly 1,300 times faster than nmap. However, its functionality is limited as compared to nmap;

external applications can be used to supplement it.

Active hosts X OS and version –

Reachability – Active ports X (typically a single

port is scanned;

invoking the tool

multiple times can be

9 https://github.com/robertdavidgraham/masscan/
10 https://www.darknet.org.uk/2007/12/scanrand–download–stateless–tcp–scanner–with–syn–cookies/
11 https://github.com/zmap/

https://github.com/robertdavidgraham/masscan/
https://www.darknet.org.uk/2007/12/scanrand-download-stateless-tcp-scanner-with-syn-cookies/
https://github.com/zmap/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 24

used to enumerate

ports)

Network topology – Services and versions X (via external banner

grabbing applications)

Existence of UI and/or

visualization capabilities

– Analysis of log files vs.

active scanning

Active scanning

Output formats Stdout redirection,

CSV, Redis, JSON

 License Apache license 2

3.1.1.8 NetCrunch tools

NetCrunch tools12 is a free network tools collection which provides a UI and runs on Windows. It provides

three categories of tools, the basic IP tools which include tools like Traceroute and DNS Info, the subnet tools

which include tools like MAC resolver and Subnet Calculator and the scanners which include tools like

network service scanner and open TCP port scanner. It doesn’t offer any export options. The program is free
to use but requires a registration.

Active hosts X OS and version –

Reachability X Active ports X

Network topology – Services and versions X

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Active scanning

Output formats – License adremsoft.com/netcru

nch.tools/eula/

3.1.1.9 MyNet toolset

MyNet toolset13 is a free network mapping toolset provided by AdRem. It detects all the network nodes

connected to the local network and displays them in a graph. It also scans each node for popular services

that might be running. It provides more details for each node including name, DNS, IP and MAC address. For

each node there is an option to access a set of network tools: ping, traceroute, and more. It runs on Windows.

Active hosts X OS and version –

Reachability X Active ports –

Network topology – Services and versions X

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Active scanning

Output formats – License Freeware

12 https://www.adremsoft.com/
13 https://www.adremsoft.com/mynettoolset/

https://www.adremsoft.com/
https://www.adremsoft.com/mynettoolset/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 25

3.1.1.10 LanTopoLog

LanTopoLog14 is an application that provides physical network topology discovery based on SNMP,

visualization and monitoring. It provides many functionalities including detection of new devices and

notification of the event, real–time device status monitoring, web browser–based access from anywhere in

the network and visualization of the topology. Runs on Windows.

Active hosts X OS and version X

Reachability X Active ports –

Network topology X Services and versions –

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Active scanning

Output formats CSV License Shareware; the free

version disables some

features after a

specific period of time.

3.1.1.11 Spiceworks NM

Spiceworks NM (network mapping)15 is a network mapping and management software. It provides a graphical

interface where a complete and customizable map of the network is presented. Some of its features include

analyzation of the bandwidth usage between the nodes, device details and network problems diagnostics.

Runs on Windows.

Active hosts X OS and version X

Reachability X Active ports X

Network topology X Services and versions X

Existence of UI and/or

visualization capabilities

X (browser based) Analysis of log files vs.

active scanning

Active scanning

Output formats A number of reports is

available, which can be

saved in CSV, XLS and

PDF

 License Free after registration

3.1.1.12 NetworkMiner

NetworkMiner16 is an open–source network forensic analysis Tool that runs on Windows, Linux, Mac OS X

and comes in free and professional editions. It is able to detect operating systems, sessions, hostnames, open

ports etc. by using passive network sniffing and packet capturing without putting any traffic on the network.

It can also perform offline analysis with packet capture (pcap) files as input.

Active hosts X OS and version X

14 https://www.lantopolog.com/
15 https://www.spiceworks.com/free–network–mapping–software/
16 https://www.netresec.com/?page=Networkminer

https://www.lantopolog.com/
https://www.spiceworks.com/free-network-mapping-software/
https://www.netresec.com/?page=Networkminer

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 26

Reachability – Active ports X

Network topology – Services and versions X

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Analysis of pcap files

and passive scanning

Output formats Export to CSV / Excel /

XML / CASE / JSON–LD

(paid version only)

 License GPLv2; paid version

option

3.1.1.13 PcapViz

PcapViz17 visualizes network topologies and provides graph statistics based on pcap files. Makes the

determination of key topological nodes and data exfiltration attempts easier. Amongst others, its features

include: (a) drawing of network topologies (Layer 2) and communication graphs (Layer 3 and 4); (b) inclusion

of country information and connection stats in network topologies; and (c) collection of statistics, such as

most frequently contacted machines.

Active hosts – OS and version –

Reachability X Active ports –

Network topology X Services and versions –

Existence of UI and/or

visualization capabilities

X (GraphViz, dot) Analysis of log files vs.

active scanning

Analysis of pcap files

Output formats output redirection License N/A

3.1.1.14 Skydive

Skydive18 is an open source real–time network topology and protocols analyzer that collects, stores and

analyzes the state of network infrastructure and the flows going through this infrastructure. Furthermore,

Skydive is SDN–agnostic, which means it doesn’t rely on SDN solutions but provides a way to collect

information from SDN controllers. Its core features include:

▪ Capture of network topology and flows.

▪ Full history of network topology and flows.

▪ Distributed architecture.

▪ Support for VMs and containers infrastructure.

▪ Unified query language for topology and flows (Gremlin).

▪ REST API.

Skydive is composed of two components, namely the Skydive Agent and the Skydive Analyzer. The Skydive

agents collect topology information and flows and forward them to a central agent for further analysis. All

the information is stored in an Elasticsearch database.

Active hosts – OS and version –

Reachability X Active ports –

17 https://github.com/mateuszk87/PcapViz
18 http://skydive.network/

https://github.com/mateuszk87/PcapViz
http://skydive.network/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 27

Network topology X Services and versions –

Existence of UI and/or

visualization capabilities

X Analysis of log files vs.

active scanning

Collection and analysis

of log files

Output formats All facilities provided

by Kibana and other

Elastic search clients

 License Apache 2.0

3.1.1.15 Maltego

Maltego19 is a network reconnaissance and data mining tool that gathers information from open sources and

visualizes it in a graph. It can analyze relationships between information that is publicly accessible on the

Internet, e.g. footprinting Internet infrastructure and finding information people and organizations. The

connections are found using OSINT by querying sources such as DNS records, whois records and social

networks. Additionally, it can import/export the graph result in many formats (CSV, XLS, PDF, image formats).

It is available in both free and paid versions.

Domain and

subdomain names

X E–mail addresses and

peoples’ names

X

IP addresses X OS and version X

Virtual hosts X Applications and their

components

X

Open ports, services,

banners

X UI types Desktop

Target spec Domain, DNS Name,

IPV4 Address, MX

Record, NS Record,

Autonomous System

(AS), etc.

 Output options CSV, XLS, XLSX, PDF,

image formats,

GraphML, Entity Lists

License Community and paid

editions

3.1.1.16 Netglub

Netglub20 is an open–source data information gathering and data mining tool that presents the information

gathered in a graph that is easily understood. Practically, it’s the open–source alternative to Maltego, but has

limited documentation. It doesn’t have sufficient documentation, it isn’t maintained properly and has less
functionality than Maltego and it is less user–friendly.

Domain and

subdomain names

X E–mail addresses and

peoples’ names

X

IP addresses X OS and version –

19 https://www.paterva.com/web7/
20 http://www.netglub.org/

https://www.paterva.com/web7/
http://www.netglub.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 28

Virtual hosts X Applications and their

components

–

Open ports, services,

banners

– UI types Desktop

Target spec Domain, DNS name, IP

address, IP

subnetwork, URL,

website, MX record,

NS record, email

address, person,

phrase

 Output options CSV

License GPL v3

3.1.1.17 Dnsdumpster.com

DNSdumpster.com21 is a free domain research web application that can discover hosts related to a domain.

It is able through DNS lookup and crawling to find extensive information related to a domain. It doesn’t
document all its capabilities, so the following table has been filled based on tests that we have performed.

Domain and

subdomain names

X E–mail addresses and

peoples’ names

–

IP addresses X OS and version X

Virtual hosts – Applications and their

components

X

Open ports, services,

banners

X UI types Web–based

Target spec Domain Output options XLSX

License Free, with limitations

on the number of

searches. Membership

is required to

overcome limitations.

3.1.1.18 Spiderfoot

Spiderfoot22 is a comprehensive reconnaissance tool. It gathers intelligence from more than 100 public data

sources (open source intelligence – OSINT), collecting a multitude of elements that include IP addresses,

domain names, e–mail addresses, names etc. A scan is created by picking the desired targets and the

intelligence data to be gathered; a number of typical bundles of intelligence information is conveniently

packed into respective use cases, while desired information can be tailored in detail by individually selecting

specific items. Spiderfoot is available under GPL v2, some modules however need registration (and possibly

payment) to work. Spiderfoot is mostly interactive, with limited possibilities for automation.

21 https://dnsdumpster.com/
22 https://www.spiderfoot.net

https://dnsdumpster.com/
https://www.spiderfoot.net/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 29

Domain and subdomain

names

X E–mail addresses and

peoples’ names

X

IP addresses X OS and version X

Virtual hosts X Applications and their

components

X

Open ports, services,

banners

X UI types Web–based

Target spec Domain, DNS name, IP

address, IP

subnetwork, email

address

 Output options CSV, GEXF

License GPL v2

3.1.1.19 ReconDog

ReconDog23 is an open–source reconnaissance tool, made available under the Apache 2.0 license. It exploits

external databases and locally driven searches to collect a multitude of information about its scan targets. It

does not provide a graphical user interface, being command–line oriented. It is capable of collecting DNS and

IP information, performing port scans or gathering the relevant information from the Censys.io databases,

detecting web application technologies and CMSs, as well as identifying honeypots.

Domain and

subdomain names

X E–mail addresses and

peoples’ names

–

IP addresses X OS and version –

Virtual hosts – Applications and their

components

X

Open ports, services,

banners

X UI types Command line

Target spec Domain, DNS name, IP

address, IP

subnetwork, URLs

 Output options CSV, GEXF

License Apache 2.0

3.1.2 Comparative analysis

In Table 3.3 and Table 3.4, we summarize the features of the network topology and host connectivity tools

surveyed above.

Table 3.3. Network topology and host connectivity tools comparison (1/2)

Tool Active

hosts

Reachability Topology OS &

version

Active ports

Services and

versions

23 https://github.com/s0md3v/ReconDog

https://github.com/s0md3v/ReconDog

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 30

Nmap X X X X X X

Angry IP

scanner

X X X X X X

Unicornscan X – – X X X

Dipiscan X X X X – X (limited)

Masscan X – – – X X

Scanrand X X X (partial) – X –

Zmap X – – – X X

NetCrunch

tools

X X – – X X

MyNet toolset X X – – – X

LanTopoLog X X X X – –

Spiceworks NM X X X X X X

NetworkMiner X – – X X X

PcapViz – X X – – –

Skydrive – X X – – –

Table 3.4. Network topology and host connectivity tools comparison (2/2)

Tool UI &

visualization

Offline result

analysis

Output formats License

Nmap X (Zenmap &

other tools)

X Active, online

via (Zenmap)

Redirection of standard

output, XML, Grepable,

Script kiddie

GPL v2

Angry IP

scanner

X (Desktop UI) Active scans

only

CSV, TXT, XML, IP–Port

list

GPL v2

Unicornscan – Active scans

only

Stdout redirection to log

file, relational database,

pcap file with received

packets

GPL v2

Dipiscan X (Desktop UI) Active scans

only

Text files freeware

Masscan – Active scans

only

XML, binary, grepable,

JSON, list

A–GPL–3

Scanrand – Active scans

only

Dump in database BSD original

Zmap – Active scans

only

Stdout redirection, CSV,

Redis, JSON

Apache license v2

NetCrunch

tools

X Active scans

only

 adremsoft.com/netc

runch.tools/eula/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 31

MyNet toolset X Active scans

only

– (results cannot be

saved)

Freeware

LanTopoLog X Active scans

only

CSV Shareware; the free

version disables

some features after

a specific period of

time.

Spiceworks NM X (browser

based)

Active scans

only

A number of reports is

available, which can be

saved in CSV, XLS and

PDF

Free after

registration

NetworkMiner X Analysis of pcap

files and passive

scanning

Export to CSV / Excel /

XML / CASE / JSON–LD

(paid version only)

GPLv2; subscription

option

PcapViz X (GraphViz,

dot)

Analysis of pcap

files

Output redirection N/A

Skydrive X Collection and

analysis of log

files

All facilities provided by

Kibana and other Elastic

search clients

Apache 2.0

According to the table above, NMAP and AngryIP scanner appear to be offering the most complete

functionalities without any limitations, such as running on specific operating systems, licensing, fee

requirement or hosting options. Both tools offer the capability to be extended, and, thus, cover more

functionalities or be tailored to specific needs. Taking the above into account, these will be the tools that will

be adopted for use in the context of Cyber–Trust. Both tools offer however limited capabilities for

determining the network topology; these capabilities may be supplemented from other tools, such as

NetworkMiner. Table 3.5 summarizes the features of the five reconnaissance tools reviewed in Section 3.1.1.

Table 3.5. Reconnaissance tools comparison

 Maltego Netglub Dnsdumpste

r.com

Spiderfoot ReconDog

Domain and

subdomain names

X X X X X

E–mail addresses

and peoples’
names

X X – X –

IP addresses X X X X X

OS and version X – X X –

Virtual hosts X X – X –

Applications and

their components

X – X X X

Open ports,

services, banners

X – X X X

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 32

UI types Desktop Desktop Web–based Web–based Command

line

Target spec Domain, DNS

Name, IPV4

Address, MX

Record, NS

Record,

Autonomous

System (AS),

etc.

Domain, DNS

name, IP address,

IP subnetwork,

URL, website, MX

record, NS record,

email address,

person, phrase

Domain Domain,

DNS name,

IP address,

IP

subnetwork,

email

Domain,

DNS name,

IP address,

IP

subnetwork,

URL

Output options CSV, XLS, XLSX,

PDF, image

formats,

GraphML,

Entity Lists

CSV XLSX CSV, GEXF Standard

output,

grepable

License Community

and paid

editions

GPL v3 Free GPL v2 Apache 2.0

Based on the information above, should a reconnaissance tool be needed in the context of Cyber–Trust for

feeding the attack model, then the open source ReconDog seems to be a right option, whilst the Spiderfoot

– up to the extent that its license limitations allow – will be also considered.

3.2 Vulnerability scanning

Vulnerability scanning is the process of assessing a network and its devices to discover vulnerable software

or misconfigurations. The purpose of this process is to aware and to enable analysts or automated tools to

take the necessary mitigation actions [100, 94]. In this section, first a review of vulnerability scanning and

service discovery tool taxonomies is presented, along with existing vulnerability assessment standards, to aid

in the choice of comparison criteria. Finally, existing vulnerability tools are examined for their suitability in

the context of the Cyber–Trust.

3.2.1 Tools and scanning taxonomies

Vulnerability assessment methods can be classified as manual, assistive, and fully automated [62]. Manual

assessments are performed by security analysts with domain knowledge and require a significant amount of

time and resources to be committed. Towards the same direction, assistive methods are performed by

security analysts using proper vulnerability scanning tools. On the other hand, fully automated methods are

performed entirely by software. Mitigation for the first two categories is performed manually by security

analysts, while the fully automated tools also automatically perform the necessary mitigation actions.

In this section, only tools allowing for a sufficient degree of automation will be covered. There are four types

of vulnerability scanners [92]: (a) port, (b) application, (c) host–based vulnerability, and (d) network–based

vulnerability. Specifically:

▪ Port scanners are used to discover open network ports of a network device and determine

information about the services provided.

▪ Application scanners are used to assess the security state of a specific application or service.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 33

▪ Host–based vulnerability scanners are used to assess the security state of the device they run on;

having direct access to device resources enables them to better detect system misconfigurations, to

consider attacks requiring local access and their findings can be more accurate than those of a

network–based vulnerability scanner. They present scalability issues, since they need to be deployed

and managed on each device separately.

▪ Network–based vulnerability scanners are used to assess the security state of the whole reachable

(from the device they run on) network; having only network access to the systems to be assessed can

present coverage problems as their service scanning module may miss network devices or services.

Also, network disruptions may occur from the usage of such tools either by vulnerability tests, or

even by normal service scanning (e.g., SCADA systems may misbehave while being scanned [19]).

In the context of vulnerability scanning, this section will cover tools under the last three categories, since the

first category (port scanners) was covered in Section 3.1. Most application/vulnerability scanning tools

include a service discovery module to provide information about the network devices (active hosts) and

about the software/services they provide (service identification, OS fingerprinting) [94]. Service discovery

techniques can be classified into active probing and passive monitoring [12].

▪ Active probing sends packages/messages to every service of each network device and analyses the

response. This technique yields more complete results.

▪ Passive monitoring analyses captured network traffic to discover network services as they are used.

Requires the installation of monitoring devices (specialized or general–purpose devices with the

ability to capture network traffic) and the choice of monitoring points in the assessed network, a

choice which can affect the analysis results. This technique is best used for trend analysis.

For both techniques, it is possible for network devices and services behind a firewall or network devices

whose services are temporarily unavailable to be missed. Usage of application/vulnerability scanners

presents some drawbacks, aside from those of their service discovery modules [92, 94]. The first drawback is

that result inaccuracies may arise from malfunctioning user–created scripts/tests/plugins, incorrect

identification of the network device services and their versions, and in some cases the need for the scanner

to be authenticated to perform its assessment. Another drawback pertains to the reliance on a static

knowledge base for performing vulnerability testing, which can make such tools miss zero–day vulnerabilities

and if such a knowledge base remains outdated, they may also miss newer (known) vulnerabilities. A third

drawback is that risk analysis is quite difficult to automate, since many tools consider the vulnerabilities in

isolation, ignoring possible vulnerability combinations/correlations during a real–world attack (something

that Cyber–Trust is taking into full consideration in order to devise intelligent mitigation strategies).

3.2.2 Comparison criteria choice

According to NIST [100], desired application/vulnerability scanner functionality includes: (a) enumeration of

network devices; (b) discovery of software vulnerabilities and system/software misconfigurations; (c) the

existence of knowledge base updating mechanism –in addition, information sources and their updating

frequency should be considered; (d) automated analysis of the results to assess the security state of the

network and its devices; (e) production of a structured/formatted report to be used by security analysts or

other tools; and (f) use of open standards is strongly preferred, such as CVE (for vulnerability naming), OVAL

(for testing the presence of a vulnerable software or service version), and CVSS (for vulnerability impact

measurements). Alongside the desired functionality, the following should also be considered:

• Breadth (how many network devices or services are covered by the tool) and depth (how much

information can be extracted for each network device or service) of the scanning operation.

• Third–party tool integration.

• Support for user–created scripts, tests or plugins.

• Tool license and usage restrictions.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 34

The accuracy of the vulnerability scanning tools will not be considered since there is no standardized way of

testing for false positives and false negatives. The comparison criteria for the tools listed in Section 3.2.3 are

presented in Table 3.6.

Table 3.6. Comparison criteria of application/vulnerability scanning tools

Field name Field description # values Possible values

Tool category The tool category from the

taxonomy of vulnerability

scanning tools [92]

 ▪ Application scanner

▪ Host–based vulnerability

scanner

▪ Network–based vulnerability

scanner

Network device or

service scanning

method

The category of the scanning

module used by the tool from

the taxonomy of scanning

methods [12]

 ▪ Active probing

▪ Passive scanning

▪ Scanning is not supported (and

textual description)

Discovery of

vulnerabilities and

misconfigurations

Whether the tool can only

test software vulnerabilities

and/or system

misconfigurations

 ▪ Software vulnerabilities

▪ Software or system

misconfigurations

Breadth and depth of

scanning

Device or network coverage

and types of devices and

software assessed by the tool

 ▪ Complete network assessment

(assessment of all discovered

network devices)

▪ Complete network device

assessment (assessment of all,

or most services of a network

device)

▪ Specific device assessment (and

textual description)

▪ Specific application assessment

(and textual description)

Existence of knowledge

base updating

mechanism

– 1 Yes/No and textual description

Knowledge base

information sources

and update frequency

– 1 Textual description

Automated result

analysis

Ability to analyze the

scanning results to derive

more information about the

security state of the network

and its devices

1 Yes/No and textual description

Output formats and

their structure

Each output format and its

structure

 ▪ Structured – using open or

publicly available standards

▪ Structured – using proprietary

format

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 35

▪ Unstructured or textual

Richness of the output

report

How much and what kinds of

information are reported by

the tool

1 Textual description

Integration with third–
party tools

– 1 Textual description

Interfacing options Existence of user interfaces,

services and programming

APIs

 ▪ Web Interface

▪ Graphical User Interface

▪ Console User Interface

▪ Application Programming

Interface

▪ Other (and textual description)

Support for user–added

functionality

Support for user–added

functionality via user–created

vulnerability tests and user–
created plugins

 ▪ Support for user–created

vulnerability tests and checks

(and textual description)

▪ Support for user–added

functionality (and textual

description)

License and usage

restrictions

– 1 Textual description

‘’ (resp. ‘1’) means that multiple (resp. single) values are possible.

3.2.3 List of tools considered

In the following subsections a non–exhaustive list of eighteen available (known) tools is presented; these are

OpenVAS, Nessus, Nikto, Arachni, w3af, and Vega.

3.2.3.1 OpenVAS

The Open vulnerability assessment system (OpenVAS)24 is a system of services and tools for network device

vulnerability scanning. It consists of two main services: the OpenVAS Scanner, performing the network

vulnerability tests (NVTs) and the OpenVAS Manager, controlling the OpenVAS Scanner as well as offering an

OpenVAS management protocol (OMP) endpoint.

Tool category ▪ Network–based vulnerability scanner

Network device or service

scanning method

▪ Active probing

Discovery of vulnerabilities

and misconfigurations

▪ Software vulnerabilities

▪ Software or system misconfigurations

Breadth and depth of

scanning

▪ Complete network assessment

▪ Complete network device assessment

Existence of knowledge base

updating mechanism

Yes

24 http://openvas.org/

http://openvas.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 36

Knowledge base information

sources and update frequency

Yes – the following feeds are provided that are updated daily:

▪ Greenbone Community Feed (GCF), is the default feed for OpenVAS.

Contains over 50K Network Vulnerability Tests (NVTs).

o Enterprise environments receive no updates since Sep. 2017

▪ Greenbone Security Feed (GSF), the commercial version of the GCF

provided by Greenbone Security.

Automated result analysis Yes – a prognostic scan can be performed to detect possible security

issues without initiating a new scan.

If a scan has been performed more than once a vulnerability trend is also

calculated and a delta report, containing only the difference between

two reports, can be created and exported.

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML

▪ XML – OVAL SC (System Characteristics) for each scanned system.

Available via a custom reporting plugin provided by Greenbone.

▪ CSV – Containing only the discovered hosts, the CPE tables or the

complete report.

▪ ARF – NIST Asset Reporting Format

Unstructured or textual:

▪ PDF – Detailing only the vulnerabilities or the complete report.

▪ LaTeX

▪ HTML

▪ TXT

Richness of the output report For every identified vulnerability the following information is provided:

▪ CVE information, CVSS score and OVAL definition from the

National Vulnerability Database (NVD).

▪ Related CERT advisories from the DFN–CERT and CERT–Bund.

Integration with third–party

tools

Nmap, ike–scan, and debscan

Interfacing options ▪ Web Interface, provided by the Greenbone Security Assistant

component or any client supporting the OpenVAS Management

Protocol – OMP.

▪ Console User Interface, provided by the OpenVAS CLI component.

▪ Other, directly with the OpenVAS Scanner and OpenVAS Manager

services, as their communication protocols are documented.

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–defined patterns for file content pattern matching.

▪ User–provided file checksums and checksum patterns.

▪ Custom CPE–based tests to detect the presence or absence of a

specific class of applications or hardware.

Support for user–added functionality:

▪ Custom reporting plugins, to extract scan result information to

custom or non–supported (by default) formats.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 37

License and usage restrictions Most components are licensed under the GNU GPL v2.0 and v3.0. For

more information refer to the project repositories25

3.2.3.2 Nessus

Nessus26 is a network device vulnerability and configuration scanner. Vulnerability information is represented

by scripts, referred to as plugins, written in the nessus attack scripting language (NASL).

Tool category Network–based vulnerability scanner

Network device or service

scanning method

Active probing

Discovery of vulnerabilities

and misconfigurations

▪ Software vulnerabilities

▪ Software or system misconfigurations

Breadth and depth of

scanning

Over 47K assets and network devices are covered (e.g. devices by HP,

CISCO, etc.; operating systems, applications, device drivers, etc.).

▪ Complete network assessment

▪ Complete network device assessment

Existence of knowledge base

updating mechanism

Yes

Knowledge base information

sources and update frequency

More than 100K vulnerability tests, called plugins, covering over 45K

CVE IDs and about 30K Bugtraq IDs are provided by Tenable. Over 100

new plugins per week are released.

Automated result analysis Yes – the Live Results vulnerability scan can be performed to detect

possible security issues without initiating a new scan.

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML

▪ CSV

Structured – using proprietary format:

▪ NBE – Nessus report format, used by older Nessus versions;

deprecated.

Unstructured or textual:

▪ HTML

Richness of the output report For every identified vulnerability the following information is provided:

▪ Nessus plugin details:

o Severity (Info/Low/Medium/High/Critical)

o Nessus plugin ID and plugin version

o Exploit type (e.g. Local), agent (e.g. Unix) and vulnerability test

family (e.g. SuSE Local Security Checks)

▪ CVE ID, OSVDB ID, CVSS score, the affected software or assets in

CPE format and others depending on the vulnerability.

25 https://github.com/greenbone
26 https://www.tenable.com/products/nessus/nessus–professional

https://github.com/greenbone
https://www.tenable.com/products/nessus/nessus-professional

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 38

▪ Synopsis, description and solution natural text fields, and related

links.

▪ Nessus vulnerability test output and existing exploits/tools (e.g.

Exploitable with: Metasploit) depending on the

plugin/vulnerability.

Integration with third–party

tools

Nmap, Nikto

Interfacing options ▪ Web Interface

▪ Console User Interface, provided by the Nessus CLI utility; provides

support for a subset of Nessus functionality (e.g. user management,

updates, etc.)

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–defined plugins (vulnerability tests) written in the Nessus

Attack Scripting Language (NASL)

License and usage restrictions Commercial license

3.2.3.3 Nikto

Nikto27 is a web server vulnerability scanner with ability to check for misconfigurations and presence of

insecure/outdated services, written in Perl. Nikto does not rely solely on the HTTP response codes as it uses

the content of the response to check the presence of an indicator (file or specific content). The vendor claims

that this significantly reduces false positives.

Tool category Application scanner

Network device or service

scanning method

Scanning is not supported

▪ Multiple IP addresses, ports and URLs are specified in a text file.

▪ Nmap scan results can be piped as input to NIkto (e.g. nmap –p80

192.168.0.0/24 –oG – | nikto.pl –h –).

Discovery of vulnerabilities

and misconfigurations

▪ Software vulnerabilities

▪ Software or system misconfigurations

Breadth and depth of

scanning

Nikto is specialized to test web servers and web services.

Existence of knowledge base

updating mechanism

Yes

Knowledge base information

sources and update frequency

Tests are provided by CIRT Inc. for 6.7K dangerous files and programs,

1.25K outdated software version checks and 270 version–specific

software checks. OSVDB (shut down since 2016) is the main source of

information.

Automated result analysis No

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML

▪ CSV

27 https://cirt.net/nikto2

https://cirt.net/nikto2

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 39

▪ JSON – Saved request and response pairs.

Structured – using proprietary format:

▪ NBE – Nessus report format, used by older Nessus versions;

deprecated.

Unstructured or textual:

▪ HTML

▪ TXT

Richness of the output report Every vulnerability test contains the following fields:

▪ Test ID, used by Nikto.

▪ OSVDB ID

▪ Server type

▪ URI to retrieve

▪ HTTP method

▪ Strings to match.

▪ Summary, message to display when a test was successful.

▪ HTTP data, to send when using the POST method.

▪ Additional headers to send.

Integration with third–party

tools

Can be launched by Nessus and results can be logged to Metasploit

Interfacing options Console User Interface

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–created tests for newer vulnerabilities.

Support for user–added functionality:

▪ User–created plugins for added functionality such as host

detection, etc.

License and usage restrictions Nikto is licensed under the GPL; tests are licensed for use with Nikto

and require written permission from CIRT Inc. for other uses.

3.2.3.4 Arachni

Arachni28 is a web vulnerability scanning framework written in Ruby, specialized to test web servers, web

services and web applications. A web browser environment is also implemented with support for standard

web technologies (e.g. HTML5, JavaScript, AJAX), also supporting manipulation of the DOM and can simulate

different browsing environment (e.g. by changing the user agent or the viewport). Arachni can tailor its

vulnerability tests, referred to as checks, to the specific web application being tested and can train itself to

follow and test new input vectors, allowing the assessment of complex web applications/pages.

Tool category Application scanner

Network device or service

scanning method

Scanning is not supported

▪ The URL or IP address of the web application/server/page must be

supplied by the user.

28 http://www.arachni–scanner.com

http://www.arachni-scanner.com/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 40

Discovery of vulnerabilities

and misconfigurations

▪ Software vulnerabilities

▪ Software or system misconfigurations

Breadth and depth of

scanning

Arachni is specialized to test web servers, web services and web

applications. It can also perform OS vulnerability testing, tests on

(commonly used in web applications) scripting languages (e.g. PHP,

ASP, Python, Ruby, and the exception of Java) and tests on web

frameworks (e.g. Rack, Rails, Django etc.)

Existence of knowledge base

updating mechanism

No – vulnerability tests can be updated along with Arachni but not

separately.

Knowledge base information

sources and update frequency

Not applicable

Automated result analysis No

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML

▪ JSON

▪ YAML

Structured – using proprietary format:

▪ AFR – Arachni Framework Report format, the reference format for

the reports created by Arachni. All other formats are based on the

information contained in this report format.

Unstructured or textual:

▪ HTML

▪ TXT

Richness of the output report A report contains:

▪ Screenshots of the web application and its DOM changes.

▪ HTML code of the DOM states.

▪ The flow of arguments through the JavaScript code.

▪ JavaScript execution snapshots, to capture injected JavaScript

code.

▪ JavaScript execution context (stack, arguments, functions etc.).

▪ The HTTP requests and responses.

Each reported vulnerability contains the following information:

▪ Severity (Informational/Low/Medium/High)

▪ A textual description.

▪ Links to the corresponding data (as mentioned above).

Integration with third–party

tools

No

Interfacing options ▪ Web Interface

▪ Console User Interface

▪ Application Programming Interface: REST API

▪ Other: Ruby Library (as a Ruby gem)

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 41

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–created vulnerability tests, referred to as checks.

Support for user–added functionality:

▪ User–created plugins to extend the functionality of Arachni.

▪ User–created report extractors, referred to as reporters, to export

the scan report in any format.

License and usage restrictions Arachni is licensed under the Arachni Public Source License29; restricted

for commercial use, written permission is needed.

3.2.3.5 w3af

w3af30 is a web application vulnerability scanning framework written in Python. It is comprised by three

categories of modules: the core modules containing framework management modules and core libraries, the

user interface modules and the plugin modules containing the rest of the w3af functionality, such as the

fuzzing engine or the vulnerability checks. w3af also provides payloads and can perform exploitation of found

vulnerabilities.

To perform a web application scan, w3af performs a three–phase process: first it indexes the whole web

application using the available crawling plugins, then it tests the whole discovered application for possible

vulnerabilities using the audit plugins, and then the results (and any error and debugging messages) are sent

to the output plugins to be exported in the desired format. If exploitation is desired, then right after the audit

plugins are finished, the attack plugins can be used to perform exploitation.

Tool category Application scanner

Network device or service

scanning method

Scanning is not supported

▪ The URL or IP address of the web application must be supplied by

the user.

Discovery of vulnerabilities

and misconfigurations

Software vulnerabilities

Breadth and depth of

scanning

w3af is specialized to test and (if desired) exploit web applications.

Existence of knowledge base

updating mechanism

No – vulnerability tests can be updated along with w3af but not

separately

Knowledge base information

sources and update frequency

Not applicable

Automated result analysis No

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML

▪ CSV

Unstructured or textual:

▪ TXT

▪ HTML

29 http://www.arachni–scanner.com/license/
30 http://w3af.org/

http://www.arachni-scanner.com/license/
http://w3af.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 42

Richness of the output report The resulting report contains:

▪ A textual description of the vulnerability.

▪ The request and its corresponding response data.

Integration with third–party

tools

No

Interfacing options ▪ Graphical User Interface

▪ Console User Interface

▪ Application Programming Interface (REST API)

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–created vulnerability tests are implemented as plugins and

w3af supports user–created plugins.

Support for user–added functionality:

▪ Since w3af is a modular framework of reusable software

components, addition of custom functionality is supported.

License and usage restrictions w3af is licensed under the GPL 2.0.

3.2.3.6 Vega

Vega31 is a GUI–based web application scanner written in Java. Along with its scanning capabilities an

intercepting proxy (a program intercepts the traffic generated from the testing system and the system to be

assessed allowing its user to study or modify it) is also included. The intercepting proxy can be used in

conjunction with the automated testing capabilities of Vega to test the target application while the user is

browsing it, thus achieving greater coverage.

Tool category Application scanner

Network device or service

scanning method

Scanning is not supported

▪ The URL or IP address of the web application must be supplied by

the user.

Discovery of vulnerabilities

and misconfigurations

▪ Software vulnerabilities

▪ Software or system misconfigurations

Breadth and depth of

scanning

Vega is specialized to test web applications

Existence of knowledge base

updating mechanism

No – vulnerability tests can be updated along with Vega but not

separately.

Knowledge base information

sources and update frequency

Not applicable

Automated result analysis No

Output formats and their

structure

Structured – using open or publicly available standards:

▪ XML alerts.

Richness of the output report Both the XML alerts and the resulting report (as viewed from the GUI)

contains:

31 https://subgraph.com/vega/

https://subgraph.com/vega/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 43

▪ Classification and Severity of the vulnerability.

▪ The Impact of the vulnerability and recommended remediation

steps (both are represented as lists).

▪ A natural text description of the vulnerability, referred to as the

Discussion field.

▪ Reference links.

Integration with third–party

tools

No

Interfacing options ▪ Graphical User Interface

Support for user–added

functionality

Support for user–created vulnerability tests and checks:

▪ User–created vulnerability tests are implemented as plugins and

Vega supports user–created plugins.

Support for user–added functionality:

▪ Vega supports user–created plugins, also referred to as modules,

written in JavaScript.

License and usage restrictions Vega is licensed under the Eclipse Public License v1.0.

3.2.4 Comparative analysis

Following is a summary of the information presented in Section 3.2.3, used to inform the choice of

vulnerability scanning tools covering the needs of the Cyber–Trust project.

 OpenVAS Nessus Nikto Arachni w3af Vega

Tool category Network–based Vulnerability

Scanner
Application Scanner

Network device or

service scanning

method

Active Probing
Not supported, IPs or URLs must be supplied by the

user

Discovery of

vulnerabilities and

misconfigurations

Both

Vulnera

bilities

only

Both

Breadth and depth

of scanning

Complete network and device

assessment

Web server

and web

service

testing

Web

server, web

service and

web

application

testing

Web application

testing

Existence of

knowledge base

updating

mechanism

Yes No

Knowledge base

information

Two feeds

updated daily,

Feed

updated

weekly, with

Feed based

on OSVDB Not applicable

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 44

sources and update

frequency

with over 50K

vuln. tests

over 100K

vuln. tests

(shut down

on 2016)

Automated result

analysis
Yes No

Output formats XML, CSV, ARF,

PDF, LaTeX,

HTML, TXT

XML, CSV,

HTML

XML, CSV,

JSON, HTML,

TXT

XML, JSON,

YAML, AFR,

HTML, TXT

XML,

CSV,

HTML,

TXT

XML

Alerts

Richness of the

output report

CVE ID, CVSS

score, OVAL

definition,

related CERT

advisories

Severity,

exploit type,

exploit

agent, CVE

ID, OSVDB

ID, CVSS

score, CPE

information,

existing

exploits,

description

and

mitigation

actions

OSVDB ID,

server type,

URI, HTTP

method,

summary

Severity,

description,

references

and data

used on the

specific

vuln. test

Descript

ion,

request

s with

their

corresp

onding

data

Vulnerabil

ity

classificati

on,

severity,

impact,

mitigation

actions,

descriptio

n,

reference

s

Integration with

third–party tools

NMap, ike–
scan, debscan

NMap, Nikto
No

Interfacing options
Web UI, CUI CUI

Web UI,

CUI, API

GUI,

CUI, API
GUI

Support for user–
defined tests and

user–added plugins

Both
User–

defined tests
Both

License and usage

restrictions

GPL v2.0 & v3.0 Commercial GPL APL,

restricted

for

commercial

use

GPL

v2.0

EPL v1.0

There were two main types of tools presented in Section 3.2.3: network–based vulnerability scanners

designed to perform complete assessment of network devices, and application scanners specialized for web

server/service/application testing. Two vulnerability scanning tools are recommended, one from each type,

should the use of such tools be needed.

For the first type–network–based vulnerability scanners, the use of OpenVAS is recommended as it has

already been used in numerous works (e.g., [4, 30]). It can output its results in highly structured and open

formats, supports modifications (via user–created vulnerability tests, functionality plugins and even direct

modifications), supports automation, and being open–source it has no usage or modification restrictions.

Finally, for the second type–application scanners, the use of Arachni is recommended as it covers the

assessment of web servers, web services and web applications. It can output its results in highly structured

and open formats, provides a variety of interfacing options (Web UI, Console UI and an API) and supports

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 45

user–created vulnerability tests and functionality plugins; the only drawback is the requirement of written

permission for Arachni to be used in a commercial product.

3.3 Exploit intelligence acquisition

Alongside network topology information (covered in Section 3.1) and discovered vulnerabilities for each

network device (covered in Section 3.2), further information about the vulnerabilities is required in order to

accurately model attacks and design mitigation schemes. This section presents a review of the existing

methodologies for the extraction of the aforementioned information, a review of existing taxonomies with

regards to security conditions (i.e. system’s aspects dealing with its security state) and their relevance to the

Cyber–Trust project, along with a comparison between the available vulnerability intelligence sources.

3.3.1 Pre/post–condition extraction

According to Aksu et al. [4], a common approach for generating graphical security model is the Pre/post–
condition approach (also referred to as Prerequisite/Postcondition or Requires/Results–In). This requires

quite detailed information about what should be satisfied in order to exploit a vulnerability (i.e. the pre–
conditions), and the results of a successful vulnerability exploitation (i.e. the post–conditions).

Typically, pre–conditions include information going beyond the network connectivity of a network device or

the reachability of the targeted service, such as the required privileges an attacker needs to have, the services

provided by a network device, the specific versions of a vulnerable software, etc. On the other hand, post–
conditions include information about the effects of a successful vulnerability exploitation, such as the

resulting privileges of an attacker, the possibility of (arbitrary) code execution on the targeted system, the

initiation of a Denial of Service (DoS) attack, etc.

The automated extraction of pre/post–condition information from exploit intelligence sources, such as

vulnerability databases (e.g. the National Vulnerability Database) or other semi–structured or unstructured

sources, remains an open problem [4] with many previous works on attack graph generation not covering

the information extraction process. The remainder of this sub–section presents a review of related works

with a focus on the information extraction process and various natural language processing methods used to

construct the attack graphs.

3.3.1.1 Aksu et al. (2018)

The model proposed by Aksu et al. [4] uses information about the network topology, the existing

vulnerabilities (from Nessus or OpenVAS) and information from the National Vulnerability Database (NVD)

for the vulnerabilities themselves. Pre–conditions for an attack constitute the required location of an attacker

on the network, referred to as the access vector (AV), and the privileges required to exploit a vulnerability.

The results of a successful attack, i.e. the post–conditions, are the privileges acquired by the attacker. The

particular information utilized for pre– and post–conditions are illustrated in Table 3.7.

Table 3.7. Pre/post–conditions used by [4]

Pre–conditions Post–conditions Information sources

Privileges

▪ OS Admin

▪ OS User

▪ Virtualized OS Admin

▪ Virtualized OS User

Privileges

▪ OS Admin

▪ OS User

▪ Virtualized OS Admin

▪ Virtualized OS User

Network topology

▪ No specific tools

mentioned.

Existing vulnerabilities

▪ Nessus or OpenVAS reports.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 46

▪ Application Admin

▪ Application User

▪ None

▪ Application Admin

▪ Application User

▪ None

Vulnerability intelligence

▪ National Vulnerability

Database

The AV is commonly obtained from the common vulnerability scoring system (CVSS) that is associated with a

vulnerability, as documented in the common vulnerabilities and exposures (CVE) items of vulnerability

databases. The values taken by the AV are: (a) physical, (b) local, (c) adjacent network, and (d) network. Two

methods of privilege generation from the NVD description text were tested: a rule–based, using a reasoning

engine and manually created rules, and one using machine learning (ML).

3.3.1.2 Gosh et al. (2015)

Cyber–Trust, a tool presented by Gosh et al. [30] in 2015, uses information about the network topology (using

manually entered information, firewall rules and the OpenVAS report), the existing vulnerabilities (from the

OpenVAS report), and information for the available exploits for each identified vulnerability from the

Metasploit framework32 exploit modules (if the required information does not exist, the Open Source

Vulnerability Database and the Bugtraq33 exploit description is used).

Pre–conditions for an attack are: the existence of a vulnerability on a network device, the attacker’s
connectivity to the targeted network device and the required privileges. Post–conditions are not specified as

they are generated by the tool at runtime considering the reported vulnerabilities and the available exploits.

Table 3.8. Pre/post–conditions used by [30]

Pre–conditions Post–conditions Information sources

▪ Existence of a specific

vulnerability

▪ Existence of a vulnerable

software version

▪ Existence of a specific

architecture

▪ Connectivity with target

▪ Privileges

▪ Metasploit modules to extract

information via keywords and

key–phrases

▪ OSVDB and Bugtraq

descriptions

Network topology

▪ Manually entered

information

▪ Firewall rules

▪ OpenVAS report

Existing vulnerabilities

▪ OpenVAS report

Vulnerability intelligence

▪ Metasploit exploit modules

▪ OSVDB and Bugtraq

descriptions

3.3.1.3 Weerawardhana et al. (2015)

Weerawardhana et al. [152] tested two methods to extract the required information from the NVD for the

generation of personalized attack graphs (PAGs); one using a machine learning approach and another using

a part–of–speech tagging engine. PAGs, which are described in [148], need information about the target

system (existing vulnerabilities, system configuration, access privileges), the actions of the user (user system

configuration, user habits or activities, sensitive information to be protected) and the actions that an attacker

has to perform for conducting a successful attack. The extracted information includes software names and

versions, file names, type of a vulnerability, user and attacker actions (as defined by the PAG), and impacts.

32 https://www.metasploit.com/
33 http://bugtraq–team.com/

https://www.metasploit.com/
http://bugtraq-team.com/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 47

3.3.1.4 Joshi et al. (2013)

Joshi et al. [58] proposed a method for the conversion of semi–structured or unstructured vulnerability

information from the NVD to an RDF format. The tool uses an entity and concept spotter to classify textual

terms in the following categories: software and OS (existence of a specific software application and in some

cases its version), network terms (e.g. IP address, SSL, etc.), attack means (a method of attack, e.g. buffer

overflow) and attack consequences (e.g. denial of service), file name, hardware, named entity recognition

(NER) modifier (follows the software and OS categories, specifies a range of versions, e.g. Adobe Acrobat X

and earlier versions), and other technical terms.

3.3.1.5 Roschke et al. (2009)

Roschke et al. [123] presented one of the earliest works specifically aimed at information extraction from

vulnerability databases (VDBs) for attack graph generation. A data model was proposed to unify vulnerability

information from different VDBs using both the available semi–structured information and information

extracted from the vulnerability description. An add–on module for the MulVAL system (see [109] and Section

5 for more details) was also implemented to test the effectiveness of their data model. A comparative analysis

of ten VDBs led to the selection of seventeen fields conveying highly relevant and useful information (if

available from the VDB fields); these are provided in Table 3.9.

Table 3.9. Relevant fields of vulnerability information in [123]

Relevant fields Relevant fields

1. Vulnerability title

2. Vulnerability description

3. CVE ID

4. Vendor–specific ID

5. Publication date

6. Date of last update

7. Popularity

8. Person/entity who discovered the vulnerability

9. Range, position of the attacker on the network

for the vulnerability to be exploitable

10. Affected OS and other software, and their

affected versions

11. CVSS score

12. Complexity of exploitation

13. Required authentication/privileges for the

vulnerability to be exploitable

14. Impact of vulnerability

15. References

16. Mitigation measures/actions

17. Vulnerability status (e.g. fixed or not)

The authors consider the items 9–13 useful to determine the pre–conditions of a vulnerability and the item

14 (the impact of a vulnerability) useful to determine its post–conditions. The items 5, 6 (publication date

and date of last update) are used to determine if an updated version of the VDB entry is available.

Table 3.10. Pre/post–conditions used by [123]

Pre–conditions Post–conditions Information sources

Extracted from:

▪ Item 9: range

▪ Item 10: affected OS and

software (with their

versions)

▪ Item 11: CVSS score

Extracted from:

▪ Item 14: Impact of

vulnerability

Vulnerability intelligence:

▪ From various VDBs (10 were

tested by the authors)

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 48

▪ Item 12: complexity of

exploitation

▪ Item 13: required privileges

or authentication

The proposed data model representing information extracted from the vulnerability description consists of

three related properties:

▪ System properties representing system characteristics, such as the existence of specific accounts or

a specific software/OS version.

▪ Influence properties, representing changes on the system properties after successful exploitation of

the vulnerability.

▪ Range properties, representing the location of the attacker on the network for a vulnerability to be

exploited.

For the influence properties two types of resources are considered: passive (e.g. files or database data) and

active (e.g. services or running software), and specific actions are mapped to loss of confidentiality, integrity

or availability. More precisely, read access, write access, and deletion/destruction of passive resources are

mapped to loss of confidentiality, integrity, and availability respectively; on the other hand, influencing the

output and losing a service’s existence in active resources were mapped to loss of integrity and availability

respectively.

3.3.2 Relations with CWE

The Common Weakness Enumeration34 (CWE) is a formal list of security vulnerabilities and other security

weaknesses maintained by the MITRE corporation; developed alongside the CVE list, CWE can be used to

map potential weaknesses and vulnerabilities with their observed instances.

Mapping a discovered weakness to its CWE concept, in the context of Cyber–Trust, can aid in the choice of

mitigation actions, and add high–level information about a vulnerability and its causes. Each of the 716

weakness entries of the CWE list can be classified as a:

▪ Class weakness–described in the most abstract terms (e.g. CWE–697: Incorrect Comparison).

▪ Base weakness–described with enough details to be detectable and mitigated while still being

abstract (e.g. CWE–1025: Comparison Using Wrong Factors).

▪ Variant weakness–the most detailed description containing low–level technology–specific details

(e.g. CWE–595: Comparison of Object References Instead of Object Contents).

▪ Composite weakness–a group of two or more weaknesses that need to be present at the same time

for a vulnerability to be present (e.g. CWE–689: Permission Race Condition During Resource Copy

requires both CWE–362: Concurrent Execution using Shared Resource with Improper Synchronization

(Race Condition) and CWE–732: Incorrect Permission Assignment for Critical Resource to be present).

A weakness entry may also be related with other weakness entries via child–of/parent–of relations (e.g. in

the research concepts view CWE–595 is a child of CWE–1025) and weakness entries sharing common

characteristics can be grouped under categories (with over 200 categories existing in the CWE list). Each entry

contains the information depicted in Table 3.11.

34 https://cwe.mitre.org/

https://cwe.mitre.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 49

Table 3.11. CWE entry fields

CWE entry field CWE entry field

CWE identifier Possible mitigation actions

Name and description Node relationship (child–of/parent–of relations)

Alternate terms Source taxonomies

Description of the behavior Code samples for weaknesses pertaining to a

specific language or architecture

Description of the exploit CVE identifier

Likelihood of exploit existence/creation References

Description of the consequences of successful

exploitation

Weakness entries (either by themselves or in Categories) can be viewed through 32 hierarchical

representations, referred to as Views, with the three most significant being: the Research Concepts View, the

Development Concepts View and the Architectural Concepts View. The remainder of this section presents a

high–level review of these three views; more detailed information can be viewed directly from the CWE

definitions.

The Research Concepts View (CWE–100035) is aimed at academic researchers, vulnerability analysts and

assessment vendors (to test their vulnerability detection tools) and presents all 716 weakness entries

organized according to abstractions in software behaviors. Table 3.12 presents the top–level entries, also

referred to as Pillars.

Table 3.12. Top–level entries included in the Research Concepts View (CWE–1000)

CWE ID Title CWE ID Title

CWE–682 Incorrect Calculation CWE–693 Protection Mechanism Failure

CWE–118 Incorrect Access of Indexable

Resource (Range Error)

CWE–697 Incorrect Comparison

CWE–330 Use of Insufficiently Random

Values

CWE–703 Improper Check or Handling of

Exceptional Conditions

CWE–435 Improper Interaction Between

Multiple Correctly–Behaving

Entities

CWE–707 Improper Enforcement of Message or

Data Structure

CWE–664 Improper Control of a Resource

Through its Lifetime

CWE–710 Improper Adherence to Coding

Standards

CWE–691 Insufficient Control Flow

Management

35 https://cwe.mitre.org/data/definitions/1000.html

https://cwe.mitre.org/data/definitions/1000.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 50

The Development Concepts View (CWE–69936) is aimed at software developers and educators, presenting

708 of the 716 weakness entries and 42 of the 247 total categories in the CWE, covering concepts used in

software development. Table 3.13 presents the top–level entries.

Table 3.13. Top–level entries included in the Development Concepts View (CWE–699)

CWE ID Title CWE ID Title

CWE–16 Configuration CWE–840 Business Logic Errors

CWE–19 Data Processing Errors CWE–442 Web Problems

CWE–21 Pathname Traversal and

Equivalence Errors

CWE–355 User Interface Security Issues

CWE–189 Numeric Errors CWE–452 Initialization and Cleanup Errors

CWE–254 7PK – Security Features CWE–465 Pointer Issues

CWE–361 7PK – Time and State CWE–490 Mobile Code Issues

CWE–389 Error Conditions, Return Values,

Status Codes

CWE–559 Often Misused: Arguments and

Parameters

CWE–399 Resource Management Errors CWE–569 Expression Issues

CWE–417 Channel and Path Errors CWE–657 Violation of Secure Design Principles

CWE–429 Handler Errors CWE–1006 Bad Coding Practices

CWE–438 Behavioral Problems

7PK refers to the ‘Seven Pernicious Kingdoms’ (CWE–700) category, based on [146].

The Architectural Concepts View (CWE–100837) is aimed at software designers and educators, presenting 223

of the 716 weakness entries and 42 of the 247 categories, organizing them according to common

architectural security tactics. Table 3.14 presents the top–level entries.

Table 3.14. Top–level entries included in the architectural concepts view (CWE–1008)

CWE ID Title CWE ID Title

CWE–1009 Audit CWE–1015 Limit Access

CWE–1010 Authenticate Actors CWE–1016 Limit Exposure

CWE–1011 Authorize Actors CWE–1017 Lock Computer

CWE–1012 Cross Cutting CWE–1018 Manage User Sessions

CWE–1013 Encrypt Data CWE–1019 Validate Inputs

CWE–1014 Identify Actors CWE–1020 Verify Message Integrity

36 https://cwe.mitre.org/data/definitions/699.html
37 https://cwe.mitre.org/data/definitions/1008.html

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/1008.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 51

3.3.3 Vulnerability intelligence sources

This section presents a review of vulnerability intelligence sources, that will be taken with a focus on semi–
structured vulnerability databases (VDBs)38; the comparison criteria used are those illustrated in Table 3.9

except the following fields: Popularity, Exploitation complexity, Required authentication or privileges and

Vulnerability status, as none of the reviewed VDBs contain such information. Additional information about

the usage of standards such as the Common Platform Enumeration (CPE) or Common Weakness Enumeration

(CWE) and available formats are also considered.

The fields in the following comparative analysis refer to information existing in specific fields of the VDBs and

not on information that can be extracted from them. If no information about the license or usage restrictions

is reported, it is assumed that the maintainer holds the copyright to the information in the VDB. A

comparative analysis of the available VDBs is conducted in the following tables, i.e. Table 3.15, Table 3.16,

and Table 3.17.

Table 3.15. Comparative analysis of VDBs (1/3)

 Maintainer Size License Vuln.

title

Vuln.

details

Available

formats

Nat’l Vulnerability

Database (NVD)41

National

Institute of

Standards and

Tech. (NIST)

 115K Public

domain

– X XML, JSON,

HTML, RSS feed

Rapid7 Vulnerability

& Exploit DB42

Rapid7 70K – X X HTML

Security Focus DB43 SecurityFocus – Copyright

held by the

maintainer

X X HTML

Exploit DB44 Offensive

Security

 40K GPL v2.0 X X HTML, RSS feed,

Raw data on

GitHub39

AusCERT Security

Bulletins45

AusCERT, at

Univ. of

Queensland

– Copyright

held by the

maintainer

X X HTML, RSS feed

CERT/CC Vulnerabi-

lity Notes DB46

CERT/CC, at

Carnegie Mellon

Univ.

– Permission

required for

any use

X X HTML, RSS feed,

Incomplete data

on GitHub40

Common Vulnerabi-

lities & Exposures47

MITRE

Corporation

 110K Permission

granted s.t.

conditions

– X HTML, CVRF

ICS–CERT

Advisories48

NCCIC, U.S.

Dept. Homeland

Security

– – X X HTML, RSS feed

38 https://first.org/global/sigs/vrdx/vdb–catalog/
39 https://github.com/offensive–security/exploitdb
40 https://github.com/CERTCC/Vulnerability–Data–Archive

https://first.org/global/sigs/vrdx/vdb-catalog/
https://github.com/offensive-security/exploitdb
https://github.com/CERTCC/Vulnerability-Data-Archive

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 52

Japan Vulnerability

Notes (JVN)49

JPCERT/CC and

IPA

– Copyright

held by the

maintainer

X X HTML, RSS feed

JVN iPedia50 Information

technology

Promotion

Agency (IPA)

– Copyright

held by the

maintainer

X X HTML, RSS feed,

VULDEF (XML–
based), API

JC3 Bulletin

Archive51

U.S. Dept. of

Energy

– – X X HTML, RSS feed

NCSC–FI

Vulnerability

Database52

Finnish Commu-

nications

Regulatory

Authority

– – X X HTML

VulDB53 VulDB 125K Creative

Commons CC

BY–NC–SA

4.0

X X HTML, RSS feed,

API

SecurityTracker54 SecurityGlobal.n

etLLC

– Copyright

held by the

maintainer

X X HTML

TippingPoint Zero

Day Initiative55

Trend Micro – – X X HTML, RSS feed

Table 3.16. Comparative analysis of VDBs (2/3)

 CVE ID Vendor–
specific ID

CVSS score CWE use CPE use Affected

H/W, S/W

Nat’l Vulnerability

Database (NVD)41

X – X X X X

Rapid7 Vulnerability

& Exploit DB42

X – X – – X

Security Focus DB43 X X – – – X

Exploit DB44 X X – – – X

AusCERT Security

Bulletins45

X X – – – X

CERT/CC Vulnerabi-

lity Notes DB46

X X X X – X

Common Vulnerabi-

lities & Exposures47

X – – – – –

ICS–CERT

Advisories48

X X X X – X

Japan Vulnerability

Notes (JVN)49

X X X X – X

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 53

JVN iPedia50 X X X X – X

JC3 Bulletin

Archive51

X X – – – –

NCSC–FI

Vulnerability DB52

X X – – – X

VulDB53 X X X X X X

SecurityTracker54 X X – – – X

TippingPoint Zero

Day Initiative55

X X X – – X

Table 3.17. Comparative analysis of VDBs (3/3)

 Impact Credit Range Publicatio

n date

Last upd.

date

References

Nat’l Vulnerability

Database (NVD)41

– X – X X X

Rapid7 Vulnerability

& Exploit DB42

– – – X X X

Security Focus DB43 X X X X X X

Exploit DB44 – X – X – –

AusCERT Security

Bulletins45

X – – X – X

CERT/CC Vulnerabi-

lity Notes DB46

X X – X X X

Common Vulnerabi-

lities & Exposures47

– X – X X

(in title)

X

ICS–CERT

Advisories48

X X – X – X

Japan Vulnerability

Notes (JVN)49

X X – X X X

JVN iPedia50 X – – X X X

41 https://nvd.nist.gov/
42 https://www.rapid7.com/db/
43 https://www.securityfocus.com/bid/
44 https://www.exploit–db.com/
45 https://www.auscert.org.au/bulletins/
46 https://www.kb.cert.org/vuls/
47 http://cve.mitre.org/
48 https://ics–cert.us–cert.gov/advisories/
49 http://jvn.jp/en/
50 https://jvndb.jvn.jp/en/

https://nvd.nist.gov/
https://www.rapid7.com/db/
https://www.securityfocus.com/bid/
https://www.exploit-db.com/
https://www.auscert.org.au/bulletins/
https://www.kb.cert.org/vuls/
http://cve.mitre.org/
https://ics-cert.us-cert.gov/advisories/
http://jvn.jp/en/
https://jvndb.jvn.jp/en/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 54

JC3 Bulletin

Archive51

X – – X – –

NCSC–FI

Vulnerability DB52

X X X X X X

VulDB53 X – X X X X

SecurityTracker54 X – – X – X

TippingPoint Zero

Day Initiative55

X X – X X –

From the comparative analysis presented in the above tables and for the primary vulnerability information

source, NVD that is maintained by NIST is the most complete one, its information is in the public domain–
and thus can be used without restriction. In addition, it uses open standards for many of its fields (CVE IDs –

allowing links with other VDBs, CVSS scores, CWE and CPE information) and its information is available in

many structured and open formats (XML, JSON along with HTML and an RSS feed). In addition, the Exploit

Database also contains useful information, as it maintains exploit code that may be useful in testing the

vulnerability in question or for conducting further analysis.

Several tools for information retrieval have been presented, a non–comprehensive selection of four tools will

be presented in the remainder of this section.

▪ CVE–Search56 is a tool for local storage and offline access to CVE and CPE information, written in

Python 3 and using MongoDB for information storage. It utilizes the NVD, CVE and the Microsoft

Security Bulletins for vulnerability information, and for exploit code it utilizes the Exploit Database

and the D2 Elliot Web Exploitation Framework57 data.

▪ CVE–Scan58 combines the results of an Nmap scan (run manually by the user) with CVE–Search to

perform a simple vulnerability scan of the network. CVE–Search is licensed under the GNU Affero

GPL v3.0 and CVE–Scan under the Original BSD license.

▪ SearchSploit59 is a tool maintained by Offensive Security for their Kali Linux penetration testing

distribution allowing offline searches to the Exploit Database. SearchSploit is licensed under the GPL

v2.0.

▪ Stucco60 is a suite of tools for the creation of knowledge graphs from various unstructured and semi–
structured information sources, like VDBs and various program logs. Three modules61 were

implemented for the retrieval of information from semi–structured VDBs: for the NVD, Bugtraq DB

and Sophos RSS feed, with the last two being deprecated. Stucco is licensed under the MIT license.

51 https://www.energy.gov/articles/673/708757+708775/JC3 Bulletin Archive
52 https://www.viestintavirasto.fi/en/cybersecurity/vulnerabilities.html
53 https://vuldb.com/
54 https://securitytracker.com/
55 https://www.zerodayinitiative.com/advisories/published/
56 https://cve–search.github.io/cve–search/
57 https://www.d2sec.com/
58 https://github.com/NorthernSec/cve–scan
59 https://github.com/offensive–security/exploitdb
60 https://stucco.github.io/
61 https://github.com/stucco/collectors

https://www.energy.gov/articles/673/708757+708775/JC3%20Bulletin%20Archive
https://www.viestintavirasto.fi/en/cybersecurity/vulnerabilities.html
https://vuldb.com/
https://securitytracker.com/
https://www.zerodayinitiative.com/advisories/published/
https://cve-search.github.io/cve-search/
https://www.d2sec.com/
https://github.com/NorthernSec/cve-scan
https://github.com/offensive-security/exploitdb
https://stucco.github.io/
https://github.com/stucco/collectors

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 55

The sources having been reviewed in this section will prove to be valuable towards sharing complete and

accurate cyber–threat intelligence via the enriched vulnerability database (eVDB) that will also include rich

information identified by Cyber–Trust’s crawling service from the surface/deep web.

3.4 Information acquisition for attack mitigation

Attack mitigation refers to the methods and techniques that can be employed to contain and reduce the

negative impacts of attacks on an infrastructure or service62. Another working definition of mitigation is “the

elimination or reduction of the frequency, magnitude, or severity of exposure to risks, or minimization of the

potential impact of a threat or warning”63. According to the NIST model [150] mitigation actions may be

classified as proactive (i.e. taking place before an attack occurs, to tackle related vulnerabilities, reduce the

attack surface or lessen the foreseen impact, should an attack occur) and reactive (i.e. taking place when an

attack is detected, typically to stop the attack process). NIST [150] also defines a classification scheme for

attack mitigation actions according to the nature of the actions taken follows:

▪ configure (adjust target configuration/settings)

▪ disable (turn off or uninstall a target component)

▪ enable (turn on or install a target component)

▪ patch (apply a patch, hotfix, update, etc.)

▪ policy (remediation requires out–of–band adjustments to policies or procedures)

▪ restrict (adjust permissions, access rights, filters, or other access restrictions)

▪ update (install upgrade or update the system)

▪ combination (combination of two or more approaches)

Out of these mitigation action categories, policy refers to activities that concern procedures, practices and

actions that are enforced outside of the narrow scope of the system to be protected, and henceforth will not

be considered further. Considering the remaining action categories, patch and update are proactive actions,

while configure, disable, enable, and restrict can be either proactive or reactive.

The objective of this subsection is to identify information sources that list mitigation actions that can be

applied to tackle threats, combined with methods which enable the automated extraction of these actions.

Besides the identification of actions, additional information that is useful in the context of attack mitigation

will be considered: this information primarily concerns the impact that each mitigation action has on the

value of each asset, an aspect that needs to be considered when selecting among possible mitigation actions

to be applied. For example, in order to mitigate an information exfiltration attack to a service originating

from a specific IP, it is clearly possible to shut down the service (a disable action); if the service configuration

allows the specification of blacklisted IPs, it is possible to blacklist the IP from which the attack originates;

and in the presence of a firewall appliance or some other IP–based access control (e.g. TCP wrappers) it is

also possible to block the access to the service from the particular IP address. Although all choices clearly

inhibit information exfiltration, it is also clear that the first mitigation method (service disablement) has a

severe impact on the availability dimension of the asset and therefore one of the two remaining methods

should be chosen whenever possible. Taking this aspect into account, we will also consider the identification

and extraction of information regarding the impact on the organizational assets’ value, which can be used to
drive the mitigation action selection process.

3.4.1 Product and vendor–oriented security advisories

Product and vendor–oriented security advisories are catalogues hosting information about vulnerabilities

that have been identified for specific products, coupled with specific instructions on how to mitigate these –

62 https://www.ovh.com/asia/anti–ddos/mitigation.xml
63 http://www.businessdictionary.com/definition/mitigation.html

https://www.ovh.com/asia/anti-ddos/mitigation.xml
http://www.businessdictionary.com/definition/mitigation.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 56

whenever such instructions are available. An indicative list of security advisory databases is shown in the

following table:

Table 3.18. Indicative list of security advisory databases

Description URL

Debian security advisory database https://www.debian.org/security/2018/dsa–4332

Microsoft security update summary https://portal.msrc.microsoft.com/en–us/security–
guidance/summary

Red Hat security advisories https://access.redhat.com/security/security–updates/#/

IBM security buletins https://www.ibm.com/security/secure–
engineering/bulletins.html

PHP security advisories https://github.com/FriendsOfPHP/security–advisories

Ruby https://github.com/rubysec/ruby–advisory–db

nodeJS https://github.com/nodejs/security–
wg/blob/master/processes/vuln_db.md

MariaDB https://mariadb.com/kb/en/library/security/

Huawei security advisories https://www.huawei.com/en/psirt/all–bulletins

Android security bulletins https://source.android.com/security/bulletin/2018–12–01.html

Information within these databases is fairly structured, listing the precise package(s) that are covered by each

security advisory, the vulnerabilities exhibited by these software packages (typically as references to CVE

entries) and the mitigation actions that can be applied, usually in the form of patches/updates to be installed

or configurations to be performed. The affected packages are listed in human–readable textual formats, and

additionally using the software name and software versioning encoding scheme endorsed by the vendor (e.g.

official product names and versions in the Microsoft security update, package names bundled with version

information in Debian security advisory database and so forth), hence this information can be harvested to

be later matched against the corresponding installed product information, when mitigation actions for a

specific machine should be applied. The mitigation actions themselves, as stated above, mainly fall under the

patch, update and configure categories.

Product–oriented security advisory databases have always a structured format, reflecting the information

fields that are used to model an advisory. In some cases, it is possible to download the database in a format

that is friendly to mechanized processing (e.g. JSON or XML documents), whereas in other cases only human–
oriented formats (predominantly HTML pages) are available. In the latter case, since these HTML pages are

highly structured, simple structure analysis of the pages and textual/pattern matching are sufficient to

identify the mitigation actions. In the former case (i.e. database availability in mechanized processing–
friendly formats), it suffices to extract and process the relevant fields, however in all cases a specific adapter

to map the database–specific information schema to a unified Cyber–Trust information schema is needed.

Regarding patch and update file identification, this data can be extracted easily through structure analysis of

the information and/or regular expression level matching. Furthermore, in most cases the installation of a

patch is performed by executing the patch binary or overwriting the vulnerable package with an updated

version, hence patch installation can be automated to a considerable extent.

Information about configuration changes that should be applied to mitigate an attack has a greater degree

of variability, since the methods that can be used to apply the configuration changes are highly dependent

https://www.debian.org/security/2018/dsa-4332
https://portal.msrc.microsoft.com/en-us/security-guidance/summary
https://portal.msrc.microsoft.com/en-us/security-guidance/summary
https://access.redhat.com/security/security-updates/#/
https://www.ibm.com/security/secure-engineering/bulletins.html
https://www.ibm.com/security/secure-engineering/bulletins.html
https://github.com/FriendsOfPHP/security-advisories
https://github.com/rubysec/ruby-advisory-db
https://github.com/nodejs/security-wg/blob/master/processes/vuln_db.md
https://github.com/nodejs/security-wg/blob/master/processes/vuln_db.md
https://mariadb.com/kb/en/library/security/
https://www.huawei.com/en/psirt/all-bulletins
https://source.android.com/security/bulletin/2018-12-01.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 57

on the product64,65. Therefore, converting configuration change information to actionable specifications is

highly likely to require human expert intervention.

Disabling and/or uninstalling the software is highly automatable, since the official product/package name is

included in the database entry.

Regarding additional information needed to perform attack mitigation, references to CVE entries are

sufficient for obtaining information about aspects such as the impact, exploitability, attack vector and

complexity of the threat; some advisory databases include local copies of these data, removing the necessity

for an additional lookup. Installation of a patch and application of a configuration usually have a low impact

at the availability of services (through the necessitation of service or machine restarts). On the other hand,

disabling a service or removing the respective software effectively zeroes the availability score.

3.4.2 Generic security advisories and vulnerability databases

Besides product and vendor–oriented security advisories, security–focused organizations provide

comprehensive lists of vulnerabilities that may affect any software or hardware asset, regardless of its

vendor. A comprehensive list of these databases is included in subsection 3.3. The entries within these

databases list the products (software and/or hardware, together with their versions) affected by the relevant

vulnerability and the mitigation actions to be performed, whenever such information is available. However,

comparing to the case of product and vendor–oriented security advisories, two major additional challenges

exist towards the direction of turning the information in the database entries into actionable rules:

1. Unambiguous and automated identification of the assets affected by the vulnerability. While generic

security advisories and vulnerability databases do refer to the assets that are affected by each

vulnerability, the naming used to make these references does not correspond to the one endorsed

by product vendor; this is also true for the versioning scheme. The different vocabularies and

encoding schemes hinder the process of matching vulnerability database entries to organizational

assets that need to be protected.

In order to tackle this issue, a number of options are available, depending on the additional

information present in the CVE:

a. Use of CPE information: Common Platform Enumeration (CPE)66 identifiers are used to

precisely specify a platform (firmware, operating system, application software, container).

Whenever such information is available in the vulnerability database and within the assets,

the matching procedure to identify affected assets can be performed using CPE identifiers.

Some vulnerability databases (e.g. NVD) include CPE information in their entries.

b. Use of SWID information: Software identification (SWID) identifiers67 are pointers to

software identification documents. A SWID tag document is composed of a structured set of

data elements that identify the software product, characterize the product's version, the

organizations and individuals that had a role in the production and distribution of the

product, information about the artifacts that comprise a software product, relationships

between software products, and other descriptive metadata. The information in a SWID tag

provides software asset management and security tools with valuable information needed

to automate the management of a software install across the software's deployment

lifecycle. SWID tags support automation of software inventory as part of a software asset

management (SAM) process, assessment of software vulnerabilities present on a computing

device, detection of missing patches, targeting of configuration checklist assessments,

64 https://www.debian.org/security/2018/dsa–4112
65 https://docs.microsoft.com/en–us/security–updates/securityadvisories/2016/3174644
66 https://nvd.nist.gov/products/cpe
67 https://nvd.nist.gov/products/swid

https://www.debian.org/security/2018/dsa-4112
https://docs.microsoft.com/en-us/security-updates/securityadvisories/2016/3174644

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 58

software integrity checking, installation and execution whitelists/blacklists, and other

security and operational use cases.

SWID tags are currently supported on major OS platforms, including Windows, MacOS and

Linux68 and recommendations have been made to modify the vulnerability databases

schema, replacing CPE tags with SWID identifiers [149], insofar however no vulnerability

database has been found to list SWID identifiers.

2. Identification of the mitigation instruction information. In many cases, generic vulnerability

databases provide mitigation instructions through references to vendors’ web pages. A first issue

encountered in this context is that references including mitigation actions are not clearly

distinguishable from other references that simply confirm the existence of the vulnerability or

provide other, not mitigation–related information. Furthermore, even in cases that the links can be

distinguished (e.g. through associated tags or by having been structurally placed in a corresponding,

clearly identifiable section of the document), the content of the links’ target document exhibits a

high degree of structural and content variability (due to the fact that it is provided by diverse

authors), hence while it can be used for information harvesting, the degree of automation that can

be supported at processing and application/enforcement level is limited.

In the following, we discuss on the above properties that relate to the content of the vulnerability databases

listed in subsection 3.3.

NVD: Within NVD, each CVE entry contains resource specifications in the form of URLs, and each such

resource is characterized with a set of tags; out of all tag values, Patch, Third Party Advisory, VDB Entry and

Vendor Advisory indicate that the associated URL resource points to a web page encompassing some

mitigation option. The resource URLs typically point to human–readable web pages (as contrasted to highly

structured documents like JSON or XML documents), and their content has a diverse format, since they are

provided by different organizations. However these documents are structured with mitigation options

appearing under suitable headings (e.g. Solution, Workaround, Remediation/Fixes, Workarounds and

mitigations, therefore it is feasible to extract such information, albeit in many cases the extracted content

cannot be used for fully automated determination of actions to be taken. NVD includes CPE information

allowing each vulnerability to be associated with the affected platforms; however CPE information is not

associated with mitigation actions, hence it is not fully possible to identify which resolution(s) can be applied

to which asset(s).

Rapid7 Vulnerability and Exploit DB: Within Rapid7 Vulnerability and Exploit DB, each CVE entry contains

several fields, out of which the Solution Reference and Solution ones provide mitigation information. The

Solution Reference field provides a URL, which leads to the related page provided by the vendor, although

sometimes no such page exists and therefore this field is not available. The Solution field provides mitigation

information in hyphen–separated keywords, e.g. mozilla–firefox–upgrade–64_0. This field can be useful in

terms of automated mitigation information extraction, at least to some extent. This is because for each

vendor, it follows a vendor–suited structured format. Some examples of this:

▪ When the solution is provided by Microsoft the format is msft–kb..., followed by the KB code.

▪ When the solution is about SUSE Linux and upgrading a component, the format is suse–upgrade–
... followed by the name of the component to be upgraded. It is accessible only via HTML page.

Rapid7 Vulnerability and Exploit DB does not provide CPE information, however it does include a pointer to

NVD, which can be used to identify related CPE identifiers; CPE identifiers retrieved in this fashion will not be

associated with specific resolutions.

Security Focus DB: The Security Focus DB provides for each CVE entry a Solution tab. When an update is

available, a human readable text is provided declaring that Updates are available and that the reader should

consult the references tab or vendor advisory for more information. In the references tab, links are provided,

68 https://tagvault.org/frequently–asked–questions–about–swids/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 59

with relevant titles, but it’s not structured, hence not automatable. In other words, the only information that

can be extracted in an automated way, is if an update is available. It is accessible only through HTML page.

Security Focus DB does not provide CPE information; Security Focus DB entries include CVEs, which can be

used as pointers to NVD, through which related CPE identifiers can be retrieved. CPE identifiers retrieved in

this fashion will not be associated with specific resolutions.

Exploit DB: The Exploit DB does not provide mitigation information.

AusCert Security Bulletins: Within the AusCert Security Bulletins database, each CVE entry contains several

fields, out of which the Remediation/Fixes, Workarounds and Mitigations, Patch Instructions, Resolution,

Workarounds, Security Advisory Recommended Actions and Mitigation ones seem to be available for

obtaining mitigation information. Except the fact that there are a lot of variations in the titles as mentioned

above, the information is presented in human–readable format and doesn’t seem to be suitable for
automated extraction. However, in some cases, namely in the Patch instructions and Resolution fields, the

actual commands for applying the patch/resolution are provided, divided by version of software. Although

the structure is not ideal; an automated solution could be implemented. It is accessible through HTML and

RSS feed.

AusCert Security Bulletins does not provide CPE information; AusCert Security Bulletins DB entries include

CVEs, which can be used as pointers to NVD, through which related CPE identifiers can be retrieved. CPE

identifiers retrieved in this fashion will not be associated with specific resolutions.

CERT Vulnerability Notes DB: Within the CERT Vulnerability Notes DB, each CVE entry contains several fields,

out of which the Solution field provides mitigation information. This field is written in human–readable

format, so it doesn’t seem to offer an automated extraction–suitable structure. It is available through HTML

and RSS feed.

CERT Vulnerability Notes DB does not provide CPE information; CERT Vulnerability Notes DB entries include

CVEs, which can be used as pointers to NVD, through which related CPE identifiers can be retrieved. CPE

identifiers retrieved in this fashion will not be associated with specific resolutions.

Common Vulnerabilities & Exposures: The Common Vulnerabilities & Exposures database doesn’t provide

mitigation information.

ICS–CERT Advisories: Within the ICS–CERT Advisories database, each CVE entry contains several fields, out of

which the Mitigations field contains mitigation information. The information is available in human–readable

format, and thus doesn’t provide an automated extraction–suitable structure. It is available through HTML

and RSS feed.

ICS–CERT Advisories does not provide CPE information; ICS–CERT Advisories entries include CVEs, which can

be used as pointers to NVD, through which related CPE identifiers can be retrieved. CPE identifiers retrieved

in this fashion will not be associated with specific resolutions.

Japan Vulnerability Notes (JVN): Within the Japan Vulnerability Notes, each CVE entry contains several fields,

out of which the Solution and Vendor Status ones provide mitigation information. The Solution field provides

a clear description e.g. Update... followed by what must be updated, or Use the latest installer,

which can be automated in some level. However, when the solution is Apply Workarounds, the workarounds

are provided in human–readable format, and thus cannot be automated. The JVN is available through HTML,

RSS feed.

Japan Vulnerability Notes does not provide CPE information; Japan Vulnerability Notes entries include CVEs,

which can be used as pointers to NVD, through which related CPE identifiers can be retrieved. CPE identifiers

retrieved in this fashion will not be associated with specific resolutions.

JVN iPedia: Regarding the content, the remarks listed above for the Japan Vulnerability Notes (JVN) apply for

JVN iPedia as well. Regarding the content access methods, JVN iPedia is additionally available in VULDEF

(XML–based) format and an API is also provided.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 60

JC3 Bulletin Archive: The JC3 Bulletin Archive provides several fields for each CVE entry, including Solution,

which contains mitigation information. The information is provided in human–readable format with a link to

the vendor’s related page. Sometimes the link is for the actual update that needs to be installed, in which

case the process is automatable, but in other cases the link is not useful. It is not structured in a way that

could be useful and it also seems outdated. It is available through HTML and RSS feed.

JC3 Bulletin Archive does not provide CPE information or CVE identifiers, hence the resolution information

therein cannot be directly associated with assets to which they may be applied.

NCSC–FI Vulnerability DB: The NCSC–FI Vulnerability DB provides several fields for each CVE entry, including

the Remediation and Possible solutions and restrictive measures ones, which contain mitigation information.

The Remediation field provides a short answer, like Software update patch, which in some cases can

be useful for automation, but not always. The Possible solutions and restrictive measures field is written in

human–readable format, and thus is not suitable for automated extraction. It is accessible only through HTML

page.

NCSC–FI Vulnerability DB does not provide CPE information; NCSC–FI Vulnerability DB entries include CVEs,

which can be used as pointers to NVD, through which related CPE identifiers can be retrieved. It is worth

mentioning that NCSC–FI Vulnerability DB entries describe the affected assets in a high level of detail, hence

textual matching techniques are bound to be highly efficient in identifying the assets affected by the

vulnerability. Whether affected assets are identified through textual matching techniques or retrieved

through NVD pointers, mitigation actions are not linked with specific CPEs, hence the provided mitigation

actions cannot be directly associated with specific assets on which they can be applied.

VulDB: The VulDB provides several fields for each CVE entry, including the Countermeasures, which provides

mitigation information. It is further analyzed in Recommended and Status fields. The Recommended field has

a short description e.g. Patch, Firewall or no mitigation known. The Status field categorizes the

recommendation provided, for example for the Patch value, it says Official Fix, for the Firewall

value the relevant text is Workaround. This information can be used in an automated way, however the

information it provides is very generic and constitutes only a first step towards an automated mitigation

action. VulDB appears to be providing the most detailed information regarding mitigation actions among all

generic vulnerability databases. It is available through HTML, RSS feed and API is provided.

VulDB provides CPE information; access to it requires registration, but even in this case only few results are

returned. Full access to CPE information requires a subscription, which is available for a fee. Since VulDB

entries contain CVEs, these can be extracted and be used as pointers to NVD entries to extract the full list of

CPEs. Whether affected assets are identified through CPEs retrieved directly from VulDB entries or retrieved

through NVD pointers, mitigation actions are not linked with specific CPEs, hence the provided mitigation

actions cannot be directly associated with specific assets on which they can be applied.

SecurityTracker: The SecurityTracker provides several fields for each CVE entry, including the Solution, which

provides mitigation information. This field seems well–structured in the case where a fix has been issued by

the vendor. It will state that a fix has been issued by the vendor, details about the fix e.g. a version code, and

a link for the relevant vendor’s advisory page. It is accessible only through HTML page.

TippingPoint Zero Day Initiative: The TippingPoint Zero Day Initiative provides several fields for each CVE

entry, including the Additional Details one, which provides mitigation information. The information is in

human–readable format but in short answers which in most cases seem to have the same structure. For

example, “Vendor has issued an update to correct this vulnerability. More details can be found at: link”. The

previous example can serve for automation up to some level. However, there are cases that a structured

format is not followed, and thus not serving automated extraction purposes. It is available through HTML

and RSS feed.

TippingPoint Zero Day Initiative DB does not provide CPE information; TippingPoint Zero Day Initiative DB

entries include CVEs, which can be used as pointers to NVD, through which related CPE identifiers can be

retrieved. CPE identifiers retrieved in this fashion will not be associated with specific resolutions.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 61

Finally, regarding timeliness, VulDB appears to be providing vulnerability analyses in a speedier fashion than

NVD. This covers the availability of vectors, scoring, references to external sources and mitigation actions.

Table 3.19 summarizes the issues discussed above for the generic vulnerability databases.

Table 3.19. Mitigation provisions for different vulnerability databases

 Includes

mitigations?

Are mitigations

distinguishable?

Includes CPE?

Nat’l Vulnerability
Database (NVD)41

X X X

Rapid7

Vulnerability &

Exploit DB42

X X –

Indirectly, through a

structurally distinguishable

reverence to NVD

Security Focus DB43 X –

(bundled into references with no

means to tell apart which

references contain mitigations)

–

Indirectly, through inclusion of

a CVE, which can be used as a

pointer to NVD)

Exploit DB44 – – –

AusCERT Security

Bulletins45

X X

(not uniformly listed, automation

hindered)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

CERT/CC Vulnerabi-

lity Notes DB46

X X

(human readable text, not easily

exploitable for automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

Common Vulnerabi-

lities & Exposures47

– – –

ICS–CERT

Advisories48

X X

(human readable text, not easily

exploitable for automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

Japan Vulnerability

Notes (JVN)49

X X

(human readable text, to some

extent exploitable for

automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

JVN iPedia 50 X X

(human readable text, to some

extent exploitable for

automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

JC3 Bulletin

Archive51

X X

(human readable text, generic

links only in many cases, only

–

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 62

partially exploitable for

automation)

NCSC–FI

Vulnerability

Database52

X X

(human readable text, to some

extent exploitable for

automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD; affected assets are

described in detail hence a

good matching level can be

achieved through processing

of text)

VulDB53 X X X

(limited for free use; full after

purchase)

SecurityTracker 54 X X –

(references to CVEs exist,

which can be used as pointers

to NVD)

TippingPoint Zero

Day Initiative 55

X X

(human readable text, only

partially exploitable for

automation)

–

(references to CVEs exist,

which can be used as pointers

to NVD)

3.4.3 Generic weaknesses information sources

Vulnerabilities are owing to the existence of weaknesses either in the source or the configuration of the

software. In all cases, the most appropriate solution is to modify or appropriately configure the software so

as to eliminate the weaknesses, but in many cases generic solutions can be applied to eliminate or reduce

the risk associated with the weaknesses. These solutions include a wide range of measures, including

reduction of attack surface (e.g. limiting access to threat agents), application of external identity controls

(e.g. through firewalls), deprivation of necessary antecedents for vulnerability exploitation (e.g. through

disablement of execution of code located in the stack segment), blocking of malicious network packets (e.g.

through deep packet inspection) and so forth. While –as noted above– these solutions are suboptimal,

compared to a focused mitigation, they may be used as a risk reduction technique until some

permanent/more effective remediation is available.

Currently, the software weaknesses catalogue that is predominantly used is the Common Weaknesses

Enumeration (CWE)69. CWE entries include, among other information, a Potential Mitigations section, in

which generic solutions on how the vulnerabilities owing to the particular weakness are listed. Each potential

mitigation is tagged with a category, with available mitigation categories being:

• Architecture and Design

• Build and Compilation

• Distribution

• Documentation

• Implementation

• Installation

• Operation

• Policy

69 https://cwe.mitre.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 63

• Requirements

• System Configuration

• Testing

Out of these categories, the one that would potentially be useful for applying mitigation in the context of

Cyber–Trust is Operation, which lists actions that can be applied on the software configuration and/or the

environment in order to lower the overall risk. The System configuration category includes some good

practices for configuring the system (applicable both immediately after installation and at any point in the

operation period), whereas the Installation category lists some generic, installation–time procedures and

practices to follow. Other categories describe actions that are not relevant to Cyber–Trust’s mitigation phase.

Both the product and vendor–oriented security advisories and the generic vulnerability databases include

pointers to the CWE list and/or mention the CWE identifiers, therefore it is easy to identify the weaknesses

to which each of the vulnerabilities is owing. From that point onwards, we can extract the appropriate

mitigation elements and instruct accordingly the security experts.

Finally, the SWE list is directly available from its source in HTML, CSV and XML formats.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 64

4. Graphical security models

The use of graphical security models (GrSMs) is the most common methodology adopted for the assessment

and investigation of network security against cyber–attackers. These models visualize the dependencies

among the system assets. Hence, they offer a clear view of the ways a cyber–attacker can launch the attacks

on the various system attributes, and as a result GrSMs constitute an important tool for the security analysis

and the design of an effective defense strategy. Many different GrSMs have been proposed [45, 64]. The

purpose of this section is not to provide an extensive review of these models, but to present the most popular

ones and highlight their pros and cons, leading to the adoption of the most suitable model (or combination

of models) for the Cyber–Trust project.

4.1 Methodology

In this section we provide an overview of the state–of–the–art in GrSMs in order to evaluate the suitability

of the existing models for Cyber–Trust project. More specifically, we will highlight the main characteristics,

advantages and limitations of the GrSMs proposed in literature in section 4.2, keeping in mind the needs of

Cyber–Trust, so that the GrSM that will be developed is aligned with the project’s ambitions. In order to

assess the suitability of the various GrSMs, we define three main criteria

▪ Criterion I: Cyber–Trust application areas.

▪ Criterion II: Interaction of the GrSM with Cyber–Trust modules and services.

▪ Criterion III: Scalability and generation aspects of the GrSM.

which are further detailed in the following subsections.

4.1.1 Criterion I: Cyber–Trust application areas

The Cyber–Trust project aims at developing a multi–level cyber–defense paradigm against a wide range of

cyber–attacks. For this reason, the GrSM that will be developed should be able to capture and model

situations where there are multiple attackers’ goals, as well as the various mitigation actions to prevent these

goals from being successfully achieved.

4.1.2 Criterion II: GrSM interactions with Cyber–Trust modules and services

Cyber–Trust project aims at building an intelligent, autonomous mitigation mechanism based on stochastic

control approaches and game theory (GT); to do so, a suitable GrSM needs to be selected (or developed).

The GrSM will be the structure upon which the decision–making process will take place. Hence, there is need

to adopt (or design) a GrSM that allows to model both the attacks and the countermeasures (i.e. the

mitigation actions), along with the (probabilistic) transitions through the system’s different security states.

In addition to the above, the GrSM to be selected, will also be utilized by the component of the TMS that is

responsible for conducting risk analysis; further details are given in Section 6. So, the design of the GrSM has

to take these dependencies into account as well.

4.1.3 Criterion III: scalability and generation

The scalability of the GrSM should be taken into account for all phases of the GrSM cycle: preprocessing,

generation, representation, evaluation, and modification (explained later on). Especially, in the case of a

dynamic environment, the modification phase should be considered carefully. Moreover, the development

process and the available tools that will be required to build the selected GrSM need to be investigated. Only

10 GrSMs have tools available (not including prototypes) and only three GrSMs (i.e., AGs, ATs and MPAGs)

have commercial tools [45]. Ideally, we would prefer to take advantage of any available software tools in

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 65

order to be able to generate and modify the GrSM to fulfil Cyber–Trust needs. Thus, in the process of

developing our GrSM, the availability of free and open–source tools will be taken into account.

4.2 Graphical security models’ classification

The various GrSMs can be categorized into tree–based models and graphs–based models. The basic

categories of tree–based GrSMs are attack trees [133, 153], defense trees [16], attack defense trees [63],

attack response trees [158], and attack countermeasure trees [124]. On the other hand, the basic classes of

graph–based GrSMs are attack graphs [112], multiple prerequisite attack graph [48], Bayesian attack graphs

[75], exploit dependency graphs [106], and logical attack graphs [108].

Although, both tree–based and graph–based GrSMs have attracted strong scientific interest during the past

years, there is significant lack of comparison between these two types in terms of general effectiveness and

performance [45, 66]. Due to the growing need for effective mitigation strategies against cyber–attacks in

modern networks, recent works focus on this issue. A recent study trying to conclude on which method is

more effective in dealing with cyber–attacks can be found in [66]. The basic differences between these tree–
based and graph–based GrSMs are next explained. A tree–based model is used to describe a single attack

goal, while a graph–based model can present scenarios with multiple attack goals; in general, a graph–based

model can contain cycles. Attack trees focus on the consequence of an attack, whereas attack graphs typically

focus on the attacker’s activity and their interaction with the targeted system [24].

The above imply that in case there is need to capture the attack paths, then a graph–based model would be

preferred to a tree–based one. On the other hand, if the focus is the assessment of the overall network

security, where only the most critical vulnerabilities of the system need to be analyzed, then a tree–based

model would probably be more suitable. Graph–based GrSMs can be generated in polynomial complexity

(see Section 5), but the evaluation phase has an exponential complexity to cover all set of attack paths or

uses heuristic methods. Tree–based GrSMs can evaluate the security in a scalable manner with polynomial

size complexity, but there is a lack of efficient generation algorithms for tree–based GrSMs [45].

4.2.1 Tree–based models

In this section we briefly review the basic tree–based GrSM categories and mention their basic properties.

The following models are presented according to the chronological order that appeared in the literature (see

Table 4.1) and are further detailed in the subsequent sections.

Table 4.1. Tree–based graphical security models

Name Reference

Attack tree (AT) [128, 134, 133]

Defense tree (DT) [16]

Ordered weighted averaging tree (OWAT) [156]

Protection tree (PT) [26]

Attack response tree (ART) [158]

Attack countermeasure tree (ACT) [124]

Attack defense tree (ADT) [63]

Attack fault tree (AFT) [65]

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 66

4.2.1.1 Attack tree

Weiss’ approach [153], which introduced threat logic trees as the first GrSM can be seen as the origin of

numerous subsequent models. One of the most influencing and widely accepted models is the AT [128, 134,

133]. According to the AT formalism, the goal of the attack is represented as the root node of AT and each

node refers to a sub–goal, with its children representing the ways to achieve that goal. Sub–goals are joined

by logical gates (e.g. AND, OR) [134]. An example of an AT is illustrated in Figure 4.1.

Figure 4.1. Example of an attack tree [134]

4.2.1.2 Defense tree

In 2006, Defense Trees (DTs) were introduced, which are an extension of the ATs providing the ability to

model defensive actions (i.e., proactive, reactive, mitigation, remediation) along with the attack events [16].

These actions are placed at the leaf node level of DTs. Apart from enriching ATs with defensive actions, the

authors use economic quantitative indexes for computing the defender’s return on security investment as

well as the attacker’s return on attack. An example of a DT is illustrated in Figure 4.2.

Figure 4.2. An example of an attack tree (left) and the corresponding defense tree (right) [16]

4.2.1.3 Ordered weighted averaging tree

OWAT was proposed in [156] to extend ATs in order to include partial satisfiability of logical conditions.

OWATs use OWA nodes which allow the modelling of situations in which there is some probabilistic

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 67

uncertainty in the number of children that need be satisfied for the parent node to be achieved, in contrast

to an ‘‘OR’’ node which requires only one of the children to be satisfied or an ‘‘AND’’ node requires all the
children to be satisfied. Techniques for the evaluation of an OWAT for the overall probability of success and

cost of an attack are provided.

4.2.1.4 Protection tree

PTs are introduced in [26]; the nodes in PTs represent countermeasures, while in ATs nodes represent

vulnerabilities. Both ATs and PTs are AND/OR trees. The root node in a PT directly corresponds with the root

node in an AT, but the rest of the tree’s structure may differ widely. An example of a PT is illustrated in Figure

4.3.

Figure 4.3. An example of an attack tree (left) and the corresponding protection tree (right) [26]

4.2.1.5 Attack response tree

In order to develop an automated intrusion response engine based on game–theoretic techniques, the

authors in [158] extended ATs to the so–called ARTs. ARTs provide a formal way to describe system security

based on possible intrusion and response scenarios for the attacker and response engine, respectively. They

also consider the inherent uncertainties in alerts received from the intrusion detection system (IDS), i.e. due

to false positives and false negatives. Unlike the ATs that are designed according to all possible attack

scenarios, ARTs are built based on the attack consequences (e.g., an SQL crash); thus, the designer doesn’t
need to consider all possible attack scenarios that could cause these consequences [45].

4.2.1.6 Attack countermeasure tree

ACTs were developed in [124] to extend DTs to include the placement of defense mechanisms at every node

of the tree and not only at the leaf node level and incorporate the probability of attack. Compared to another

similar model ARTs, the ACTs do not suffer from the problem of state–space explosion (because solution in

ART is resolved by means of a partially observable stochastic game model). The authors use single and multi–
objective optimization to find suitable countermeasures under different constraints. In ACT, there are three

distinct classes of events:

▪ attack events,

▪ detection events, and

▪ mitigation events.

ACT can consist of a single attack event, or an attack event and a detection event, or an attack event and

multiple detection events, or an attack event, a detection event and a mitigation event, or an attack event,

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 68

multiple detection events and the corresponding mitigation events. Examples of ACTs are illustrated in Error!

Reference source not found..

Figure 4.4. Examples of attack countermeasure trees with: (a) one attack event, (b) one attack and one detection

event, (c) one attack and multiple detection events, (d) one attack, one detection and one mitigation event, (e)

multiple detection and multiple mitigation

4.2.1.7 Attack defense tree

In [63] ADTs are introduced and formalized, which present graphically the possible actions of the attacker as

well as the available countermeasures the defender can employ. Thus, they provide a representation of the

interactions between an attacker and a defender, as well as the evolution of the security mechanisms and

vulnerabilities of a system. The authors in [63] develop a complete attack–defense language. In contrast to

the ACT, an ADT has nodes of two opposite types:

▪ attack nodes, and

▪ defense nodes.

An example of an ADT is illustrated in Figure 4.5, where attack (resp. defense) nodes are shown in red (resp.

green) color.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 69

Figure 4.5. Example of an ADT for an attack on a bank account [63]

4.2.1.8 Attack fault tree

AFTs are formalized in [65], which combine characteristics of fault trees and ATs to jointly capture the safety

and security aspects. The authors equip AFTs with stochastic model checking techniques to enable a rich

plethora of qualitative and quantitative analyses. AFTs model how a top–level (safety or security) goal can be

refined into smaller sub–goals, until no further refinement is possible. In that case, they arrive at the leaves

of the tree that model either the basic component failures, the basic attack steps or on demand instant

failures. Since subtrees can be shared, AFTs are directed acyclic graphs, rather than trees. Although the

underlying formalism is very similar to the AT, the widened capabilities allow the user to investigate both

security and safety aspects using a single model, which other GrSMs are mostly incapable to do so.

4.2.2 Graph–based models

In this section we briefly review the basic graph–based GrSM categories. Likewise, the following models are

presented according to the chronological order that appeared in the literature (see Table 4.2) and are further

detailed in the subsequent sections.

Table 4.2. Graph–based graphical security models

Name Reference

Attack graph (AG) [112]

Exploit dependency graph (EDG) [106, 107, 104]

Bayesian attack graph (BAG) [75]

Logical attack graph (LAG) [108]

Multiple prerequisite attack graph (MPAG) [48]

Compromise graph (CG) [80]

Hierarchical attack graph (HAG) [155]

Countermeasure graph (CMG) [11]

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 70

Attack execution graph (AEG) [72]

Attack scenario graph (ASG) [5]

Conservative attack graph (CoAG) [157]

Security argument graph (SAG) [145]

Incremental flow graph (IFG) [25]

Core attack graph (CAG) [13]

4.2.2.1 Attack graphs

AGs [112] were proposed for network risk analysis of computer networks. AG represents attack states and

the transitions between them. AGs can be used to identify attack paths that are most likely to succeed, or to

simulate various attacks. In AGs a node represents states (e.g., host, privilege, exploit or vulnerability), and

an edge is a directed transition from pre–condition to post–condition when an event of the state has been

executed. Constructing AGs by–hand can be tedious, error–prone and impractical for an attack graph

comprised of many nodes. Hence, automating the process ensures that the graph is

▪ exhaustive (contains all possible attacks), and

▪ succinct (contains only those network states from which the attacker can reach its goal).

Such a way of automated AG construction based on formal logical techniques (i.e. via model–checking) was

proposed by Sheyner et. al. in [138], which receives as input a set of states and a transition relation and

outputs the AG. The monotonicity assumption (on the attacker’s behavior) is worth mentioning at this point;

this was proposed in [7] to deal with the poor scalability of AG construction and present a more efficient

solution of generating the AGs compared to [138]. The monotonicity assumption assumes that the attacker

will not give up previously attained capabilities; under this assumption, the AG construction’s complexity can

be reduced from exponential to polynomial [45, 74]. An example of an AG is illustrated in Figure 4.6.

Figure 4.6. Example of an attack graph and the generation process [112]

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 71

4.2.2.2 Exploit dependency graph

Based on the monotonic logic of attacker’s behavior [7, 55], the authors in [106, 107, 104] proposed EDG.

The assumption of monotonic logic also allows the resolvability of cycles and other redundancies in the

dependency graph. In an EDG, the pre–conditions and post–conditions for exploits are encoded as graph

nodes and edges. The resolution of cycles is part of a more general resolution of postcondition redundancies.

That is, there is no reason to cycle among exploits if their postconditions remain true after an initial exploit

execution, neither is there reason to execute exploits whose postconditions have already been met. As the

authors state, cycles and other redundancies are common in real networks and they are violations of

monotonicity that must be resolved. Indeed, in the real world, attackers themselves would avoid such

redundancies. We note that in [56, 102], the authors utilized dependency graph, a structure similar to EDG,

developed the topological vulnerability analysis (TVA) tool, which builds a dependency graph, which is a

structure similar to EDG.

4.2.2.3 Bayesian attack graph

The authors in [75] proposed BAGs in order to provide a GrSM for convenient probabilistic analysis. A

Bayesian attack graph can be seen as a directed acyclic graph (DAG) over nodes representing random

variables and edges signifying conditional dependencies between pairs of nodes. The bucket elimination

algorithm is used for belief updating and the maximum probability explanation algorithm is utilized to

compute an optimal subset of attack paths relative to prior knowledge on attackers and attack mechanisms.

Once the BAG is created, it can be used to perform probabilistic inference. The structure of the BAG does not

differ from the structure of the typical AG, but the AG is treated as a Bayesian network with probabilistic

assignments. Hence, the complexity and functionalities depend on the AG [45].

It should be noted though that, in a typical scenario of a BAG, each node in the graph represents a specific

host of the network with a potential security violation state; two nodes may represent the same host but

with different states, for instance, one with user privilege, and one with root privilege [75]. Therefore, a BAG

is somehow a host–based attack graph, which is something different from the majority of the other classes

of attack graphs that are being considered as state–based attack graphs.

4.2.2.4 Logical attack graph

In [108], a new approach for representing and generating AGs is proposed, referred to as LAGs, in order to

deal with the scalability issues arising in model–checking approaches such as those described in [138] when

applied to moderate sized networks. A LAG directly illustrates logical dependencies among attack goals and

configuration information. In a LAG a node in the graph is a logical statement, which does not encode the

entire state of the network, but only some aspect of it. The edges in a LAG specify the causality relations

between network configurations and an attacker’s potential privileges. As the authors state, Sheyner’s AG
[138] illustrates snapshots of attack steps, or “how the attack can happen”, whereas a LAG illustrates causes
of the attacks, or “why the attack can happen”.

These causality relations between system configuration information and an attacker’s potential privileges
constitute a significant advantage of LAGs. There are two kinds of nodes in a LAG, namely

▪ a derivation node, and

▪ a fact node.

Fact nodes are further divided into primitive nodes and derivative nodes. Primitive nodes do not require a

pre–condition, whereas derivative nodes require. A fact node is labeled with a logical statement and it is

dependent on one or more derivation nodes, which represent a successful application of an interaction rule,

where all its preconditions are satisfied by its children. The derivation nodes serve as a medium between a

fact and its reasons (i.e., how the fact becomes true).

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 72

The size of a logical attack graph is polynomial in the size of the network, whereas in the worst case an AG’s
size could be exponential. The LAG generation tool proposed in [108] builds upon MulVAL [109], a network

security analyzer based on logical programming.

4.2.2.5 Multiple prerequisite attack graph

In [48], MPAGs are introduced along with the corresponding MPAG generation tool, called NetSPA. This

structure models attacker privileges and reachability conditions as state nodes in the attack graph. More

precisely, the nodes in a MPAG belong to three types, namely state nodes, prerequisite nodes and

vulnerability instance nodes. State nodes represent an attacker’s level of access on a host and outbound

edges from state nodes point to the prerequisites they can provide to an attacker. Prerequisite nodes

represent either a reachability group or a credential. Outbound edges from prerequisite nodes point to the

vulnerability instances that require the prerequisite for successful exploitation. Vulnerability instance nodes

represent a vulnerability on a specific port. Outbound edges from vulnerability instance nodes point to the

single state that the attacker can reach by exploiting the vulnerability. An example of an MPAG is illustrated

in Figure 4.7.

Figure 4.7. Example of (a) full graph, (b) predictive graph and (c) multiple–prerequisite graph [48]

4.2.2.6 Compromise graph

In [80], CGs were introduced to provide a quantitative measure of risk reduction. CG is a directed graph,

whose nodes represent stages of a potential attack and edges represent the expected time–to–compromise

for several attacker skill levels. CG provides a uniform assessment mechanism that can be applied to the

evaluation of security measures in other control systems. It provides a quantitative assessment of relative

time for an attacker to generate an undesired consequence. However, the CG only consists of attack states,

the model lacks features to capture pre and post–conditions (i.e., vulnerabilities) [45].

4.2.2.7 Hierarchical attack graph

In [155], a novel approach was introduced to generate AGs that are suitable for large–scale networks. In a

HAG two–layer AG is constructed, where the upper layer is a hosts’ access graph and the lower layer is

composed of some host–pair AGs. More specifically, in this two–layer model, the lower level describes all of

the detailed attack scenarios between each host–pair, and the upper layer skips such detail information to

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 73

show the direct network access relationships between each host–pair. An advantage of HAG is that it does

not need to generate a global complete attack graph, and thus saves the computation cost. This model also

utilizes the monotonicity assumption. The other assumption that HAG is based upon is the user privilege

assumption, i.e., attackers only need user access privileges at source hosts when exploiting vulnerabilities at

target hosts. The generation of a HAG takes polynomial time, whose upper bound computation is O(N2).

We note that a hierarchical GrSM called HARM [42, 43], whose formalism can be found in [44] was proposed

with two layers modeling network hosts and vulnerabilities, respectively. Then, an AG is used in both the

upper and the lower layers to generate the HAG. HARM is a hybrid GrSMs that uses both graph and tree–
based GrSMs. AG and AT are utilized in two different layers that modeled network topology and

vulnerabilities respectively. Functionalities of the hybrid GrSMs are dependent on the model used. For

example, if an AG is used in both layers of the HARM, then it can provide attack sequence information,

whereas the HARM with AT in both layers cannot [45].

4.2.2.8 Countermeasure graph

In [11], CMGs were proposed as an extension to ATs. The authors extended ATs in three ways. First, they

consider more complex relationships among goals, actors and attacks. For example, an attack could be

executed by several actors, or an actor could pursue more than one goal. Such scenarios are captured by

CMGs opposed to ATs. Secondly, they include priorities assigned to goals, actors, attacks and mitigation

actions or countermeasures. Finally, they include countermeasures. The edges connect goals to actors if the

actor pursues the goal, actors to attacks if the agent is likely to be able to execute the attack and attacks to

countermeasures if the countermeasure can prevent the attack. An example of a CG is illustrated in Figure

4.8.

Figure 4.8. Example of a countermeasure graph [11]

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 74

4.2.2.9 Attack execution graph

AEG, a similar GrSM to AG, was proposed in [72]. AEGs include adversary attack behavior models. Nodes in

AEGs belong to one of the following types. Access nodes which describe the system–specific network

domains or physical locations through which attackers can attack the system. Skill nodes which describe the

proficiency of the attacker in executing specific types of attacks. Attack goal nodes, which are the attackers’
target goals. Knowledge nodes, which are pieces of system information an attacker can utilize to achieve a

goal and attack step nodes which are the intermediate steps of an attack. AEG has similar properties as

MPAG, with an additional intermediate step of an attack and specification of compromised data or

information. However, the generation method requires manual input of attacks and attackers’ information

from the user [45]. An example of an AEG is illustrated in Figure 4.9.

Figure 4.9. Example of an attack execution graph [72]

4.2.2.10 Attack scenario graph

The combination of AGs and EDGs led to ASGs [5] towards enhancing situation awareness. In order to

guarantee scalability, the authors propose efficient algorithms to track and index ongoing attacks and analyze

future scenarios and show that they scale well for large graphs and large volumes of incoming alerts. Their

main contributions are the following. They provide a mechanism to index alerts and recognize attacks in real–
time and they provide a mechanism to integrate AG and EDG and enable real–time scenario analysis and

better security decisions. More specifically, they extend AGs the notion of timespan distribution, which

encodes probabilistic knowledge of the attacker’s behavior as well as temporal constraints on the unfolding
of attacks. The intuition behind ASGs is that the execution of a vulnerability (i.e., a node in AG) might cause

a reduction in performance in one or more network entities (nodes in EDG). This, in turn, may affect other

entities not directly affected by the exploit.

4.2.2.11 Conservative attack graph

CoAGs were introduced in [157]. The authors focus on the deployment of a moving target defense system.

The interesting part is that this GrSM models both gaining and losing privilege and as a result, it invalidates

the monotonicity assumption [7], which is utilized by most GrSMs. An example of a CoAGs is illustrated in

Figure 4.10, which is associated with the system of Figure 4.11.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 75

Figure 4.10. Example of a conservative attack graph [157]

Figure 4.11. The mission planning system associated with the CoAG of Figure 4.10 [157]

4.2.2.12 Security argument graph

A SAG is a graph whose vertices represent security goals (properties) and the edges denote dependencies

between those goals. A SAG is a graphical formalism that integrates diverse inputs (including workflow

information for processes executed in the system, physical network topology, and attacker models) to argue

about the level of system security. They were introduced in [145] and are automatically generated by the

cyber security argument graph evaluation (CyberSAGE) tool.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 76

4.2.2.13 Incremental flow graph

IFGs were proposed, along with the corresponding tool called Sphinx, in [25] for software defined networks

(SDN). The authors aim at detecting in real–time both known and unknown attacks on network topology and

data plane forwarding originating within an SDN. Sphinx incrementally builds and updates IFGs with succinct

metadata for each network flow and uses both deterministic and probabilistic checks to identify deviant

behavior. An example of an IFG is illustrated in Figure 4.12.

Figure 4.12. Example flow and construction of the corresponding flow graph [25]

4.2.2.14 Core attack graph

CAGs were introduced in [13] to reduce attack graph analysis complexity, handle network cycles, ease

visualization aspects and support efficient subsequent analysis. Along with the formalization of CAGs, the

network attack graph generator (Naggen) tool was developed for generating, visualizing and exploring core

attack graphs. The proposed approach relies on identifying the main attack avenues towards specific network

targets by performing a structural summarization process over the input network. The process essentially

summarizes alternative routes between any two directly connected nodes and only keeps those routes than

cannot be summarized into any other link in the graph. As a result, the obtained graphs present simpler

structures which in turn can be further explored and analyzed in a hierarchical manner.

4.3 Comparative analysis

Due to the importance of GrSMs in cyber–security, a number of excellent survey papers are available [45, 64,

74, 61, KN46]. Perhaps the most complete survey paper in terms of comparison among the various GrSMs

proposed in literature is [45]. The authors in [45] describe the usefulness of GrSMs on the basis of

▪ efficiency,

▪ application of metrics, and

▪ availability of tools.

The efficiency is described by the scalability and modifiability of GrSMs, which can be detailed in their phases

(i.e. (i) preprocessing, (ii) generation, (iii) representation, (iv) evaluation, and (v) modification). The

generation phase uses the gathered security information and generates the GrSM. The representation phase

visualizes and stores the GrSM. The evaluation phase assesses the security of the networked system with

given input security metrics. The modification phase captures the change in the networked system and

updates the GrSM accordingly. The application of metrics distinguishes which types of security metrics can

be used, and in [45] they are categorized into security–oriented (e.g., risk analysis), mathematical (e.g., a

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 77

probability of an attack success), or financial impact (e.g., return on investment). The availability of tools

describes how the user may access the GrSM in a form of tools [45].

Tree–based GrSMs do not suffer from the state space explosion when enumerating events, as they are only

dependent on the number of events modeled. Therefore, a scalable generation of tree–based GrSMs results

in scalable evaluation as well. Although generating and representing GrSMs are scalable (especially for

graph–based GrSMs), there are still needs for scalable evaluation and modification of GrSMs. Graph–based

GrSMs can be generated in polynomial complexity, but the evaluation phase has an exponential complexity

to cover all set of attack paths or uses heuristic methods. However, many heuristic methods have been

proposed that address the scalability issues in the evaluation phase. Tree–based GrSMs can evaluate the

security in a scalable manner with respect to polynomial size complexity, but there is a lack of efficient

generation algorithms for tree–based GrSMs. As a result, there is still great need for more robust methods

of graph–based GrSM evaluation and tree–based generation methods, as well as research into how to

capture changes in the networked system efficiently in GrSMs [1].

Regarding the suitability of the various GrSMs for Cyber–Trust, with regards to Criterion I, the graph–based

models seem to be more suitable, as they allow for multiple attacker goals to be represented and more

complex dependencies among the security conditions and the exploits. However, a hybrid model where a

tree–based and a graph–based GrSM co–exist should not be excluded, as it might result in better scalability

results.

Table 4.3 below summarizes the arguments of the GrSM evaluation. As discussed above, criterion I

necessitates the adoption of a graph–based GrSM (although a hybrid system is not excluded); as a result,

tree–based models are not included in the comparison conducted in the table.

Table 4.3. Evaluation of GrSMs

GrSM Criterion I4I Criterion III

AG The classic AG may not be suitable due to the fact that in AG a

node in the graph represents the whole security state, whereas

we aim at building a GrSM where each node represents a

security condition and the edges show the dependencies among

these security conditions.

There is a variety of tools for

generating AGs (I.e., NuSMV,

RedSeal, Skybox, Cauldron,

CyGraph), but none of them

is free or open–source

EDG The fact that offer the option to model exploits and the

relations among the security states via post–conditions / pre–
conditions provide a quite suitable framework for modelling

both the attacker’s and defenders available actions.

Although there exists a

generation tool (i.e, TVA), it is

neither free, nor open–
source

BAG The convenience that BAGs offer for probabilistic analysis

makes the consideration and adoption of the techniques used

in BAGs possible.

No generation tool available

LAG The formalization of LAGs, where the nodes represent logical

statements and the edges causality relations between network

configurations and attacker’s privileges, seems not to be
suitable for the envisaged GrSM for Cyber–Trust.

The generation tool MulVAL

is available online and open–
source

MPAG The representation of security state nodes and vulnerability

nodes is in accordance with the GrSM we envisage for Cyber–
Trust.

Although there exists a

generation tool (i.e, NetSPA),

it is commercial

CG CGs focus on the expected time–to–compromise for several

attacker skill levels and provide a quantitative assessment of

relative time for an attacker to generate an undesired

No generation tool available

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 78

consequence. The CG only consists of attack states, the model

lacks features to capture pre– and post–conditions (i.e.,

vulnerabilities) and as a result this GrSM’s characteristics are

not suitable.

HAG The hierarchical structure proposed by HAGs may be a useful

attribute to incorporate into our GrSM. Such an approach may

be beneficial in terms of the complexity of generating the GrSM,

as well.

The Safelite tool, which is the

generation tool for the hybrid

model HARM, is neither free,

nor open–source

CMG The modelling of attack goals and countermeasures, as well as

the modelling of multiple actors, makes CMGs an attractive

GrSM for Cyber–Trust.

No generation tool available

AEG AEGs focus on the representation of the knowledge required by

the attacker to achieve its goals. In cyber–Trust, we want the

modelling of the possible countermeasures as well, so this

model is not suitable.

The generation tool (i.e.,

ADVISE) is available online,

but not open–source

ASG ASGs combine AGs with EDGs, so they are in accordance with

the envisaged GrSM for Cyber–Trust. Moreover, the algorithms

proposed in ASGs for efficiently tracking and indexing ongoing

attacks might be useful for the online iIRS.

No generation tool available

CoAG This model invalidates the monotonicity assumption, so in case

we identify this characteristic useful for the needs of Cyber–
Trust, then it arises as a suitable GrSM. Otherwise, other GrSMs

are more suitable.

No generation tool available

SAG Not suitable because of the lack of inclusion of

countermeasures in the modelling.

The corresponding tool (i.e.,

CyberSage) requires license

IFG Not suitable due to focus on deviant behavior with regards to

network flows.

The generation tool Sphinx is

not free

CAG The summarization process of the alternative routes between

any two directly connected nodes seems to be not suitable for

the iIRS model, which ideally would like to capture all available

attacker and defender options.

The generation tool Naggen

is not free

Regarding criterion II the two main features that we require is the ability to model the attack and mitigation

actions for the needs of the intelligent intrusion response system (iIRS), as documented in deliverable D2.3,

and the ability to efficiently perform probabilistic inference mainly for the risk analysis task performed by the

TMS. The envisaged automated defender and rational attacker formulation of the project needs a

representation of all the available defender’s and attacker’s actions. Thus, for fulfilling the needs of the

interaction between the GrSM and the iIRS, the characteristics of EDG, MPAG, CMG and ASG are suitable and

we regard these GrSMs as the basis upon which our GrSM will be developed in WP5. Moreover, we aim at

incorporating characteristics of BAGs into our GrSM, which are suitable for the risk analysis task.

Finally, criterion III refers to the technical issues of developing the GrSM. In this process, the possible

exploitation of the suitable already available tools should be considered. Unfortunately, as it can be deducted

from Table 4.3, there are no (well–established) open–source and freely available tools for the GrSMs we aim

to utilize (see criterion II discussion in the previous paragraph). However, with respect to the scalability issues,

we may incorporate ideas and the hierarchical structure from HAGs and the hybrid model HARM (uses both

graph–based and tree–based GrSM) for our GrSM.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 79

As a conclusion to the preceding state–of–the–art review and comparative analysis, the GrSM that will be

developed and utilized for the needs of the Cyber–Trust project will have two main characteristics. First, it

will inherit the modelling of security attributes and countermeasures in an inter–dependency fashion (GrSM

that are closely related with these characteristics and structure are EDG, MPAG, CMG, ASG). The second

modelling feature that our GrSM will inherit is the probabilistic inference techniques provided by BAGs. The

aforementioned GrSMs are collectively in terms of the three criteria the most well suited for the objectives

of the Cyber–Trust. In particular they efficiently incorporate more complex attack progressions through a

hypergraph representation that allows for the sequential infiltration of the network, they are in good

alignment with the information available to the attacker and defender provided by the intrusion detection

system and sources of information leakage, they allow for a rigorous and detailed formulation of present and

future rewards as security metrics, they are amenable to both experimental simulations and theoretical

analysis through the use of stochastic games and partially observed Markov decision processes. Finally, the

hierarchical structure presented in HAGs and HARM will be considered for a possible inclusion in our GrSM,

because of the potential benefits in terms of scalability of the GrSM construction and modification.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 80

5. Attack graph generation

As it is shown in Chapter 4, attack graphs constitute a main instrument to represent and analyze security

attacks. Therefore, generating attack graphs is essential towards illustrating and evaluating the possible

attack paths in networks. To this end, there are several attack graph generation techniques, whilst there are

also several tools that can be used to automatically apply these techniques to produce (and visualize) attack

graphs. Each of these tools is generally uniquely associated with a specific type of attack graph, i.e. with a

specific security model. According to the classification presented in [59], four main issues need to be

investigated towards attack graph generation:

i) Reachability analysis, which provides reachability information regarding how an attacker can reach a

target.

ii) Attack template determination, which allows for deriving the relationships between a set of

privileges and a vulnerability exploit. An attack template specifies the conditions required by an

attacker to perform specific attacks successfully; it also describes the conditions gained by the

attacker, in case of a successful attack. The attack templates form the attack model. The attack

models can be also classified as follows [4]:

▪ Prerequisite/Postcondition (Requires/Results–In) models, that is models based on prerequisites

defined as the conditions needed to exploit the vulnerabilities, as well as on postcondition

determined as the capabilities obtained by the attackers once the prerequisites are in place.

▪ Artificial Intelligence Based models, that is models in which information of system configuration

and vulnerability description is being fed as input, resulting in an attack graph according to a

reasoning engine that appropriately correlates the input data.

The vast majority of the tools follow the Prerequisite/Postcondition model (see also Section 3.3.1).

iii) Attack graph structure determination, i.e. determining of a proper type of attack graph.

iv) Attack graph core building mechanism, which rests with the algorithms employed to build a graph.

In this context, there are logic–based methods in cases that the attack paths are created using logic

deduction methods, as well as graph–based methods if the building problem is seen as a graph

traversal problem and attack paths are created through graph search. Possible attack path pruning

may also be decided during the core building mechanism.

In this chapter we shall provide an overview of the main currently available tools, performing a comparative

study with respect to the aforementioned criteria, with the ultimate goal to reveal the appropriate tool(s) for

efficiently modelling the attackers in the framework of the Cyber–Trust system.

5.1 Tools for generating attack graphs

In this section, we briefly review the most important tools for generating attack graphs via presenting their

main characteristics. Our ultimate goal is to provide a comparative study of these tools, towards deciding

which is the one that fits well with the Cyber–Trust system. For a more comprehensive survey, we refer to

[59] and [45].

5.1.1 TVA

The topological vulnerability analysis (TVA) tool utilizes a database of exploit conditions, i.e. the conditions

needed for exploiting vulnerabilities, as well as of postconditions that are related with the corresponding

exploitations [121, 56]. By these means, combinations of possible attack scenarios can be modelled, based

on the network connectivity and the corresponding privileges that the attacker acquires, according to the

exploitations. Therefore, attack paths (sequences of exploits), leading to specific network targets, can be

discovered.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 81

More precisely, the underlying idea is the usage of an (exploit) dependency graph (see Section 4.2.2.2) to

represent the preconditions and postconditions regarding an exploit. Subsequently, a graph search algorithm

is used to correlate the individual vulnerabilities in a chaining mode. The TVA can be used in an off–line

network security analysis, to determine optimal locations for the firewalls and intrusion detection and

prevention systems [59], as shown in Figure 5.1.

Figure 5.1. TVA attack graph visualization

The developers of the TVA tool first integrated the Nessus vulnerability scanner to automate the network

discovery process. As stated in [56], each vulnerability reported by Nessus is being cross–referenced against

a list of known exploits, whilst Nessus–based exploits may also have preconditions and/or postconditions for

access type and privilege level. Such preconditions and postconditions are manually generated from the

vulnerability information, which is available in natural language [4]. Therefore, as new vulnerabilities become

known, a manual update of the conditions database needs to take place, thus raising concerns regarding the

efficiency and scalability of this approach – although, in [102] and [53], an extension of the TVA is described

with scalable generation algorithm. These recent versions of the TVA tool utilize the reachability concepts

introduced in [48], which rest with employing the rules in firewalls, as well as the signatures in intrusion

prevention systems, as an additional source of information to build a reachability matrix; moreover, trust

relationships amongst the target network hosts, in conjunction with the usage relationships amongst the

applications, are also used for reachability purposes [59]. Other scanner tools, such as Retina, FoundScan and

Symantec Discovery are also employed [102]. The TVA tool utilizes the public text databases NVD and CVE to

produce the exploitation logic. The approach of the TVA assumes the monotonicity property of attacks and

it has polynomial (quadratic) time complexity [45].

Finally, it should be stressed that the TVA forms the basis of a commercial attack graph generation tool, being

called Cauldron [54].

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 82

5.1.2 NetSPA

The network security planning architecture (NetSPA) is based on the so–called attacker’s state, which is a
combination of the locality and effect (access level) information [48]. A first version of the NetSPA is given in

[10], whilst it has been significantly changed in [48]. NetSPA identifies four access levels regarding the

attacker’s capabilities: root, user, DoS and other. A state may provide the attacker zero or more credentials

(which is defined as any information relevant to access control, such as password), whilst the locality is

strongly related with the reachability – which in turn depends on whether the access level of the attacker is

root or user (more generally, the reachability indicates whether a given host is able to connect to open ports

on all hosts in the network [48]). Such information, in conjunction with vulnerability information from several

sources, generate preconditions and postconditions. The authors in [48] refer to Nessus vulnerability

scanner, the Sidewinder and Checkpoint firewalls, the CVE dictionary, and the NVD vulnerability database as

the available sources of information that can be employed; the main pieces of information are network

topology, vulnerability information, and credentials. In the NetSPA, reachability conditions are used to reduce

the space and time complexity of building a graph [59]. The NetSPA also assumes monotonicity.

The NetSPA tool is based on the so–called multiple–prerequisite attack graphs, whose construction seems to

be faster than others. The preconditions and postconditions are being produced via a logistic regression

model. However, as it is stated in [4], the adopted privilege classification scheme in the NetSPA does not

cover application level privileges. In the typical case, the complexity of the NetSPA scales as O(nlogn) in

relation with the number n of hosts. A successor of NetSPA, being called GARNET [154], is also based on

MPAGs, which provides a simplified view of critical steps that can be taken by an attacker, whilst it allows

users to perform what–if experiments including adding new zero–day attacks.

A more recent version of the NetSPA is introduced in [47], which processes the rules in personal and proxy

firewalls and the signatures in intrusion prevention systems to construct the reachability conditions (as

described above, these principles have been also followed in the new versions of the TVA). Moreover,

similarly to the TVA, trust relationships amongst the target network hosts, in conjunction with the usage

relationships amongst the applications, are also used for reachability purposes [59]. Finally, features such as

zero–day exploits, client–side attacks and countermeasures have been developed in this last version.

5.1.3 Mulval

The Mulval uses a reasoning system with Datalog tuples and rules, where Datalog is a syntactic subset of

Prolog, towards constructing a LAG [109, 108]. This tool actually relies on an artificial intelligence–based

model.

More precisely, in the context of the Mulval the output from the vulnerability scanner tools, as well as

network topology information, are being expressed in Datalog, which are subsequently being fed into the

reasoning engine. The reasoning engine consists of a collection of Datalog rules, based on the operating

system behaviors and interactions between various components in the network. These rules are hand–coded

and specify exploits such as code execution, file access, and privilege escalation. The Mulval, based on its

inputs, analyzes the security risks of the software vulnerabilities in a correlated fashion and generates

security alerts.

As stated in the [59], all the aforementioned rules are seemed to be evaluated simultaneously in parallel,

which has impact on both time and storage complexity. Both complexity measures are on the order of the

square of the number of the hosts in the network. However, according to recent experiments described in

[4], Mulval produced significant rates of false positive and negatives.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 83

5.1.4 Cygraph

Cygraph is a tool that is being developed by MITRE70 [103], which combines data from numerous sources to

build a unified graph representation for network infrastructure, security posture, cyber threats, and mission

dependencies. It employs a multi–relational property graph formalism [101]. Cygraph leverages upon the

topological vulnerability analysis.

The Cygraph actually uses the so–called property graphs, which are multi–relational graphs with vertices and

edges of multiple types having arbitrary key/value attributes (properties). CyGraph relies on other tools and

data sources for raw material to build its attack graphs. For example, as described in [101], the Cauldron tool

for TVA builds network attack graphs (security posture) which are ingested into CyGraph. For cyber threats,

CyGraph ingests data for both potential and actual threats, including from the Splunk log analysis tool, packet

capture via Wireshark, the NVD, and common attack pattern enumeration and classification (CAPEC). For

capturing mission dependencies on cyber assets, CyGraph ingests models developed through other MITRE

tools.

5.1.5 CyberSAGE

CyberSAGE tool automatically generates a SAG, having manually as input information on the topology of the

network, attacker actions and capabilities [145]. The various pieces of diverse information such as business

processes, network topology and adversary information will be represented by CyberSAGE as input models.

These will be used to initialize the graph generation engine. The tool provides also quantitative security

metrics to support holistic security assessments of critical infrastructure systems. The corresponding

algorithm suggests a polynomial time complexity of O(TV), where T is the number of templates and V is the

number of vertices.

5.1.6 ADVISE

The adversary view security evaluation (ADVISE) tool provides a discrete–event simulation environment for

producing network security metric values [68]. It is based on an attack execution graph, which is a set of

paths determined by attack steps. An attack step is being considered as successful if the required skills, access

conditions and knowledge items have been obtained by the attacker. Therefore, the authors in [68] describe

the attacker profile, as the one holding the skills of the attacker and his initial knowledge about the target

network.

The attack execution graph is used in conjunction with the defined attacker profiles to find the attack paths

that could be followed by the corresponding attacker types. In fact, the ADVISE tool mimics, via simulation,

the progress of the attacker inside the network as a series of attack steps according to the attacker profile.

During the simulation, the tool computes values for the network security metrics; these can be state metrics

(i.e. the average amount of time the target network is in a specific state) or event metrics (i.e. the average

number of times an event occurs).

The attack decision function used by the ADVISE tool accounts for the cost, payoff and detection probability

when determining the next attack step for the attacker [59]. The modeling formalism of ADVISE has been

incorporated in the Möbius modeling simulation tool71.

5.1.7 Naggen

The network attack graph generator (Naggen) is a recent security tool aiming at the generation and

visualization of specific attack graphs, being called core graphs. As described in [13], Naggen is composed of

three main building blocks:

70 https://www.mitre.org/research/technology–transfer/technology–licensing/cygraph/
71 https://www.mobius.illinois.edu/

https://www.mitre.org/research/technology-transfer/technology-licensing/cygraph/
https://www.mobius.illinois.edu/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 84

▪ Naggen Shell, a command–line interface for configuring and controlling the generation process,

▪ Naggen Core, is responsible for the analysis and graph generation processes, and

▪ Naggen Display, which contains visualization mechanisms to display the generated attack graphs.

The main novelty of the Naggen seems to be the use of core graphs; these graphs are compact, allowing for

a reduction in the analysis complexity. The main underlying idea of the core graphs rests with identifying the

main attack paths towards specific network targets by performing a structural summarization process over

the input network. By this summarization, the obtained graphs have simpler structures.

5.1.8 Evaluation – Discussion

Table 5.1 summarizes the main characteristics of the software tools discussed so far.

Table 5.1. Software tools for developing attack graphs

Tool Attack

template

AG

model

Building

mechanism

Integrated with Complexit

y

License

model

TVA Text

processing–
based attack

template

EDG Graph–
based

Nessus, Retina, FindScan,

NVD, CVE databases, etc.

O(n2) Commercia

l

NetSPA Manually

defined attack

template

MPAG Graph–
based

Nessus, Sidewinder,

Checkpoint, NVD, CVE

databases, etc.

O(n logn) Commercia

l

Mulval Manually

defined attack

template

LAG Logic–based OpenVAS, Nessus O(n2) to

O(n3)

Free72

ADVISE Manually

defined attack

template

AEG Graph–
based

None (ADVISE is used for

design decisions before

the system is deployed or

before network changes

are implemented – i.e. it

analyzes architectural–
level vulnerabilities)

N/A https://ww

w.mobius.il

linois.edu/

Naggen Manually

defined attack

template

CAG Graph–
based

N/A N/A Not

publicly

available73

CyberSAGE Manually

defined attack

template

SAG Graph–
based

The modeling of the

potential threats rests

with a list of potential

attack actions for

different device classes

and the required attacker

properties to perform

those actions

O(nT),

where T =

number of

templates

License

needed74

72 http://www.arguslab.org/software/mulval.html
73 http://www.naggen.org/
74 https://www.illinois.adsc.com.sg/cybersage/download.html

https://www.mobius.illinois.edu/
https://www.mobius.illinois.edu/
https://www.mobius.illinois.edu/
http://www.arguslab.org/software/mulval.html
http://www.naggen.org/
https://www.illinois.adsc.com.sg/cybersage/download.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 85

Cygraph Manually–
defined attack

template

AG (in

multi–
relational

form –

property

graph)

Graph–
based

Nessus, Retina, Qualys,

Nmap, NVD, Wireshark,

etc.

N/A Not free

(communic

ation with

MITRE)

If an attack template is being characterized as manually defined, it corresponds to a case that the template

is manually formed by security experts. Otherwise, a text–processing based attack template refers to a

template formed by applying text processing methods to the information contained in appropriate databases

[59]. As main conclusions, we derive the following:

a) Most tools are not open source neither free; an exception being the Mulval tool, as well the Möbius

modeling simulation tool.

b) Attack graph tools require input information which can be gathered through different software tools;

this is not fully–automated, due to the fact that information on vulnerabilities are mainly described

in natural language in public databases/sources. Hence, it is expected that this process should be

(semi–)supervised by humans and, more precisely, security experts.

c) Although each tool utilizes a different graph model, all types of graphs are state–based and not host–
based (that is their nodes do not correspond to elements of the network, but to a state related with

the system/attacker status, in terms of whether vulnerabilities have been exploited). The only

exception is Naggen that, according to the demo75, generates host–based attack graphs.

d) All proposed models seem to have inherent complexity issues and thus, handling the scalability in an

effective manner still constitutes a challenging research task.

5.2 Attack graphs for Cyber–Trust

In Cyber–Trust platform, it is necessary to implement both proactive and reactive measures for impeding

potential attackers from mounting successful attacks. The above analysis illustrates that an attack graph

possesses many advantages that allow for both modelling an attacker’s behavior as well as for identifying
and alleviating possible weaknesses in the system; moreover, attack graphs – as described in the sequel –

constitute a powerful tool for performing static and dynamic risk assessment of networks.

Due to the heterogeneity of the devices that will be part of the Cyber–Trust ecosystem, which in turn results

in special security aspects, appropriate attack graph generation models should be employed, being able to

capture this complex attack surface. To this end, probabilistic attack graphs seem to be a proper path to

address the security challenges.

The notion of probabilistic attack graphs is quite broad, including any attack graph which also has

probabilities that model the likelihood of compromising each node of the graph, according to the specific

information it carries. In a typical scenario, CVSS scores (see Section 6) can be used to model such

probabilities – i.e. the probability of compromising a node n while being at a node m (that is the conditional

probability Pr[n|m]) can be estimated through the CVSS scores of the vulnerabilities corresponding to the

node n that can be exploited starting from the node m. Bayesian attack graphs, which are described in Section

4.2.2.3, present such desired properties. Although the initial definition of Bayesian attack graphs in [75] is

quite strict with regard to the type of its nodes, the principles that rest with Bayesian attack graphs can be

also applied to clustered structures of networks, thus generalizing the notion of a graph node; by these

means, a Bayesian attack graph can be appropriately constructed to model the dependencies across clusters,

via adding one edge from one node in each cluster to one node in each of the other clusters, provided that

75 http://demo.naggen.org/

http://demo.naggen.org/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 86

the DAG structure required for BNs is retained [90]. Such an approach may also efficiently alleviate scalability

issues.

None of the software tools described in Section 5.1 seems to suits well with Bayesian attack graphs, whilst

the vast majority of them are not freely available. Therefore, in the framework of the Cyber–Trust project,

the modelling of the potential attacks will be implemented in an ad–hoc manner, via developing an

appropriate probabilistic attack graph to capture the dependencies between the several parts of the network

under monitoring, in relation with the possible vulnerabilities that might be exploited by the attacker. To this

goal, several open source implementations of some algorithms generating attack graphs will be investigated;

for instance, the following open source implementations will be examined in terms of their applicability and

effectiveness:

▪ The Python implementation in github.com/Rhy0ThoM/Distributed–Attack–Graph–Generation is

related with the method of distributed attack graph generation [60], which is based on a parallel and

distributed memory–based algorithm that builds vulnerability–based attack graphs, with the aim to

cope with the size explosion of the graph.

▪ The Python implementation in github.com/av9ash/AttackGraphAnalyzer calculates the probability of

a root node being compromised, through the usage of a local NVD database to normalize base score

and assign it as a vulnerability value for that particular node.

▪ The Python tool in github.com/cyberImperial/attack–graphs aims to help security administrators to

reason about the risk posed to the various system components and to evaluate adversarial and

defense strategies when signs of compromise have been found. This product seems also to be able

to provide a visualization of the network, whilst the inference engine depends on Mulval.

▪ Python and C++ implementations of BAGs are given in github.com/lovingmage/IBAG.

It should be pointed out though that the aforementioned implementations are not tested, whereas their

documentation is very limited.

https://github.com/Rhy0ThoM/Distributed-Attack-Graph-Generation
https://github.com/av9ash/AttackGraphAnalyzer
https://github.com/cyberImperial/attack-graphs
https://github.com/lovingmage/IBAG

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 87

6. Risk management and attack mitigation

Risk management and attack mitigation are important processes for the protection of IT infrastructures from

advanced cyber–attacks. There exists a large number of risk assessment & management standards and

methodologies, e.g. those by NIST [96, 93, 95] and the International Standards Organization (ISO) /

International Electrotechnical Commission (IEC) [50, 51, 52, 49], providing concrete frameworks and

guidelines for managing risks and threats. Managing security risks is quite a complex task that in a holistic

approach involves many different levels [95]: (a) organizational, (b) mission and business processes, and (c)

information systems. Our sole concern here is the last level, i.e. how to manage risks at the information

systems level, particularly focusing on the needs of Cyber–Trust project.

Risk management is about dealing with security risks in a proactive way, i.e. to harden a system’s security by
eliminating its weaknesses and minimizing potential risks before the occurrence of security incidents; this is

a continuous and iterative process. Most of the proposed frameworks consider threats and system’s
vulnerabilities in isolation to those existing in other infrastructure’s elements and they work well in more

typical setups, where the environments are more or less static; a high–level framework is covered in Section

6.1. The IoT ecosystem allows the formation of much more complex and dynamic networks, compared to the

previous setup, where typical risk management frameworks are quite hard to implement in practice. The

design of risk management methodologies that are able to cope with highly dynamic environments has

already drawn the attention of standardization bodies, e.g. NIST [97], and constitutes an active research area.

Although efforts have been made to transform traditional standards from static procedural activities to more

dynamic approaches, e.g. in [98], the vast majority of the approaches rely on GrSMs (see Section 4) and are

presented in Section 6.2.

On the other hand, attack mitigation refers to the procedures that have to be in place so that any defensive

action is taken in a reactive way, i.e. during a security incident. The approach taken by Cyber–Trust project is

to rely on the same models, that is GrSMs, in order to devise intelligent intrusion response and mitigation

solutions. Therefore, Section 6.3 provides a classification of mitigation actions (both proactive and reactive)

to allow for a sufficient degree of automation in the attack mitigation process along with a number of tools

to be used for enforcing the selected mitigation actions.

6.1 Static (typical) risk management

As highlighted above, NIST has published a framework for risk management in [93], that includes three main

phases: (a) risk assessment, (b) risk mitigation, and (c) evaluation and assessment. From the whole risk

management process, we subsequently include only those steps that also provide input to the methods of

Section 6.2, or are performed in a more dynamic fashion (to allow for comparison). In addition, steps having

already being presented in the previous sections (e.g. vulnerability identification of Section 3) are excluded

as well.

6.1.1 Risk assessment

In order to assess the overall risk linked to the identified vulnerabilities of an IT system (see Section 3), the

computation of (a) the likelihood of a vulnerability being exploited, and (b) the impact that a successful

exploitation will have on the system’s operation and an organization’s business, needs to be performed. The

likelihood of an attack depends on the attacker’s profile (see Section 7), the particular details of the

vulnerabilities, as well as, the effectiveness of the security defenses in place. In [93], a qualitative rating of

the likelihood has been given, whereas more contemporary techniques rely on quantitative methods that

are built upon the CVSS standard, as shown in Section 6.2.1.

On the other hand, to conduct the impact analysis a security expert needs to weight information about a

system’s mission (services, processes, etc.), critical data (their value), and the data sensitivity. The impact of

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 88

a security incident is commonly measured in terms of the loss or degradation of the main security goals

confidentiality, integrity, and availability (CIA). Such a measurement is either quantitative (for tangible

aspects, like loss of revenue, cost of patching, manpower required, etc.) or qualitative (for those aspects that

cannot be measured in specific units) and therefore they are subjectively assigned to a particular magnitude.

Table 6.1 provides indicative definitions of the qualitative categories.

Table 6.1. Magnitude of impact definitions [93]

Impact’s

magnitude

Impact’s definition

(Vulnerability exploitation may:)

Low ▪ result in the loss of some tangible assets or resources;

▪ noticeably affect an organization’s mission, reputation, or interest.

Medium ▪ result in the costly loss of tangible assets or resources;

▪ violate, harm, or impede an organization’s mission, reputation, or interest;

▪ result in human injury.

High ▪ result in the highly costly loss of major tangible assets or resources;

▪ significantly violate, harm, or impede an organization’s mission, reputation, or interest;

▪ result in human death or serious injury.

Apart from the likelihood of an attack exploiting a particular vulnerability, additional factors that could be

taken into consideration towards computing the impact, might include the approximate cost of a successful

exploitation as well as the way that this cost varies if the (successful) attack is carried out by threat actors of

a specific profile.

In order to measure the risk, a risk–level matrix is commonly used [93], whose inputs are the attack’s

likelihood and its impact, as determined above; the scoring granularity of these factors varies amongst the

methodologies, but often three levels are used, namely high, medium, and low. The determination of the risk

levels is subjective; a typical example is provided in the 3x3 matrix of Table 6.2.

Table 6.2. Traditional risk matrix for risk determination [93]

 Threat impact

 Low (10) Medium (50) High (!00)

T
h

re
a

t
li

k
e

li
h

o
o

d
 Low (0.1) Low

10 X 0.1 = 1

Low

50 X 0.1 = 5

Low

100 X 0.1 = 10

Medium (0.5) Low

10 X 0.5 = 5

Medium

50 X 0.5 = 25

Medium

100 X 0.5 = 50

High (1.0) Low

10 X 1.0 = 10

Medium

50 X 1.0 = 50

High

100 X 1.0 = 100

Risk scale: low (1 – 10); medium (11 – 50); and high (51 – 100)

If the outcome suggests a high risk, there is a strong need for corrective measures. An existing system may

continue to operate, but a corrective action plan must be put in place as soon as possible. If the outcome is

rated as medium risk, then corrective actions are needed and a plan should be developed to incorporate

these actions in a reasonable time period. Finally, if the outcome is described as low risk, then corrective

actions might still be implemented if (otherwise, the risk is accepted). The corrective actions that are taken

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 89

proactively from an organization, so as to mitigate or completely eliminate the identified risks, involve the

identification of the proper controls and additional/alternative security mechanisms that are available for

mitigating a risk. During the selection process, the following factors are taken into consideration [93]:

▪ Effectiveness of controls;

▪ Legislation and regulation;

▪ Organizational policy;

▪ Operational impact; and

▪ Safety and reliability.

The control recommendations resulting from the risk assessment process are provided as input to the risk

mitigation process, during which they will be evaluated, prioritized, and implemented.

6.1.2 Mitigation strategy

The risk mitigation process is responsible for selecting and implementing the most appropriate controls for

(ideally) minimizing an IT system’s risk, while at the same time minimizing the impact on an organization’s

resources or mission, and minimizing the cost of implementing the selected controls. It is clear that this is a

hard–to–solve problem (that becomes even harder in today’s highly complex IT systems) and therefore the
elimination of all risks is almost impossible in the vast majority of the cases. In a static risk management

framework, a general procedure that can be followed for mitigating risks involves [93]:

▪ If a vulnerability exists, implement techniques to reduce the likelihood of being exploited.

▪ If a vulnerability can be exploited, apply proper security controls to minimize the risk of occurrence.

▪ If the attacker’s cost is less than the potential gain, apply protections to increase the attack’s cost
(thus, decreasing the attacker’s motivation).

▪ If the loss is high, apply technical and non–technical measures to limit the extent of the attack

(thereby reducing the potential for loss).

The security controls that will be eventually deployed will be the result of a cost–benefit analysis aiming at

determining if the cost of implementing the controls can be justified by the reduction in the level of risk. In

more detail, this involves determining the impact of implementing (or not) the controls, estimating the total

implementation costs (e.g. hardware/software, performance reduction, policy/procedure realization,

personnel hiring/training, and maintenance costs), and assessing the implementation costs against system

and data criticality. An estimate of the disruption potential or operational degradation that the application

of new control will impose on the target system can be obtained from the NIST’s extensible configuration

checklist description format (XCCDF) specification [99], where the following values are foreseen:

▪ unknown (disruption not defined);

▪ low (little or no disruption expected);

▪ medium (potential for minor or short–lived disruption); and

▪ high (potential for serious disruption).

The risk remaining after the implementation of the controls is called residual risk. If the residual risk has not

been reduced to an acceptable level, then the risk management cycle must be repeated until its value get

lower than a predefined threshold.

6.2 Dynamic risk management on graphical models

It is clear from the risk management framework presented in Section 6.1 that such approaches –requiring

the subjective analysis of threats and risks by security experts in many steps– face great challenges when

they are applied in complex and highly dynamic environments [97]. Such challenges concern the large

number of new vulnerabilities discovered each day, the ever–growing complexity of the IT infrastructures to

be protected, the technical sophistication of the multistep attacks carried out by cyber–attackers in order to

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 90

incrementally penetrate networks and systems, as well as, the inability of the current security defenses to

detect such attacks.

6.2.1 Risk assessment

The information needed for assessing the overall risk linked to the identified vulnerabilities of an IT system,

i.e. the likelihood of a vulnerability being exploited and a successful exploitation’s impact, are measured in a

quantitative manner using industry standards. The use of the common vulnerability scoring system (CVSS) is

prevalent in this area; it provides a measure on how critical a vulnerability should be considered to be, so

that risk mitigation efforts can be prioritized. CVSS three groups of metrics, also depicted in Figure 6.1: base,

temporal and environmental metrics. The base metrics contain a set of features about the exploitability and

the impact of a vulnerability; the corresponding base score (BS) is computed as 𝐵𝑆 = 𝐸𝑆𝐶 + 𝐼𝑆𝐶 by means

of the exploitability sub–score (ESC) and the impact sub–score (ISC).

Figure 6.1. CVSS metrics and equations76

6.2.1.1 Setting up the scene

Next, we present how dynamic approaches relying on GrSMs (see Section 4) utilize CVSS in computing the

likelihood of attack, the probability of successful exploitation and an attack’s impact.

Attack likelihood. This probability is required by all frameworks having been proposed for dynamic risk

management –see e.g. [97, 114, 3, 76, 91, 33]. This probability can measure our prior knowledge about the

likelihood of an attack targeting at some specific vulnerability. Clearly, the probability should depend on the

availability of exploit code and the current state of exploit techniques (e.g. proof–of–concept or fully

functional exploit code). This knowledge is captured by CVSS via the exploit code maturity (E) temporal metric

that takes values in the range [0, 1]. This can also be linked to the attacker’s profile (see more in Section 7)

since the availability of easy–to–use exploit code means that even unskilled attackers will be able to launch

the attack.

Exploitation likelihood. Given the existence of an exploit for a vulnerability, the likelihood of a successful

exploitation depends on several factors. The CVSS standard provides a sufficient set of metrics on these

factors, and specifically on the following

▪ The attack vector (AV) reflecting the context by which vulnerability exploitation is possible.

▪ The attack complexity (AC) describing the conditions beyond the attacker's control that must exist in

order to successfully exploit the vulnerability.

▪ The privileges required (PR) documenting the level of privileges an attacker must possess before

successfully exploiting the vulnerability (part of preconditions in Section 3.3).

76 https://www.first.org/cvss/cvss–v30–specification–v1.8.pdf

https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 91

▪ The user interaction (UI) capturing the need for a user to actively participate in the successful

compromise of the vulnerable system.

Let 𝐴𝑉base, 𝐴𝐶base, 𝑃𝑅base and 𝑈𝐼base denote the base metrics corresponding to the above factors. Then, the

exploitability sub–score is computed as follows

𝐸𝑆𝐶 = { 8,22 𝐸𝑆𝐶base 8,88 𝐸𝑆𝐶base if scope is unchangedif scope is changed

where 𝐸𝑆𝐶base = 𝐴𝑉base 𝐴𝐶base 𝑃𝑅base 𝑈𝐼base. The expression shown above has already been adjusted by

the 1,08 factor that the CVSS standard uses to weight the base score if scope is changed; so, the above is the

direct contribution of the exploitability to the computation of the base score. The same expression has also

been used by other works in the literature, where it is also referred to as the probability of success of an

exploit 𝑒i [114]; i.e. it holds Pr[𝑒i] = 2 𝐸𝑆𝐶base. Many variations of this approach can be found, e.g. by

differentiating this probability for the initial and intermediate steps of a multistep attack, or even between

the proactive and reactive mode of risk analysis [33].

Impact computation. As in the case of static risk management methods, the impact of a security incident is

measured in terms of the loss of confidentiality, integrity, and availability. However, it is important that the

impact measurement is quantitative in such dynamic framework in order to allow for immediate proactive

actions or real–time reaction to ongoing cyber–attacks. Towards that direction, the CVSS standard is also

used to compute the impact’s rating [97]; this is accomplished by computing the impact sub–score, which is

defined as

𝐼𝑆𝐶 = { 6,42 𝐼𝑆𝐶base 8,12 (𝐼𝑆𝐶base − 0,029) − 3,51 (𝐼𝑆𝐶base − 0,020)15 if scope is unchangedif scope is changed

in CVSS 3.0, where the scope change flag indicates the ability for a vulnerability to impact resources beyond

its means, or privileges. Likewise, the above expression equals the direct contribution of the impact to the

computation of the base score. The parameter 𝐼𝑆𝐶base is given by

𝐼𝑆𝐶base = 1 − (1 − 𝐶base)(1 − 𝐼base)(1 − 𝐴base)

where 𝐶base, 𝐼base and 𝐴base denote the confidentiality impact, integrity impact, and the availability impact

respectively. Note that if the terms 𝐶base, 𝐼base and 𝐴base were interpreted as probabilities, then the

expression computing 𝐼𝑆𝐶base above would be interpreted as the probability of admitting an impact of any

form. To keep things simple, only the expressions relying on the base metrics are shown above. The CVSS 3.0

standard also provides modified equations due to the environmental metrics that consider the security

controls available in the IT system under analysis in order to deliver more accurate set of scores. Other

approaches in the literature, e.g. [33], use simpler expressions for computing the impact sub–score

𝐼𝑆𝐶base = 𝛽𝐶 𝐶base + 𝛽𝐼 𝐼base + 𝛽𝐴 𝐴base

where 𝛽𝐶 , 𝛽𝐼 and 𝛽𝐴 are weights, satisfying 𝛽𝐶 + 𝛽𝐼 + 𝛽𝐴 = 1, that are related to the criticality of assets

affected by a vulnerability with respect to confidentiality, integrity, and availability respectively.

6.2.1.2 Dynamic risk modelling

To deal with the drawbacks of static risk models, GrSMs in conjunction with probabilistic techniques (often

based on Bayesian inference) have been proposed in order to model and assess the identified risks of IT

systems [97, 114, 3, 76, 91, 33]. The nodes of attack graphs are assigned a probability that describes the

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 92

likelihood of being attacked, whilst the edges of the graph are labelled with the probabilities of successful

exploits (as described in the previous section). An example graph is given in Figure 6.2, where A, B, C (resp.

D) are referred to as internal (resp. external) attributes of the GrSM. The probability that is given to an

external attribute represents the chances of a remote attack (can be computed via the exploit code’s maturity
of CVSS as shown above, or it can be the security administrator’s subjective belief). These models allow

calculating the local conditional probability distribution (LCPD) at each internal attribute that represent the

likelihood of being attacked given knowledge on the state of the parent node(s).

Figure 6.2. Example BAG illustrating probability computations [114]

To rely on Bayesian techniques for risk assessment, the BAG should be an acyclic graph; although cycles can

often occur in attack graphs, due to the modeling of different attack scenarios, cycles do not increase an

attack’s likelihood or its impact. The dynamic aspects of this approach pertain to the ability of updating the

probabilities assigned to nodes due to emerging security conditions, changes in contributing factors, or the

occurrence of attack incidents. The BAG can then be used to calculate the posterior probabilities in order to

re–evaluate the risk from such emerging conditions.

6.2.2 Mitigation strategy

The objective of dynamic risk mitigation strategies is likewise to select the security controls simultaneously

minimizing the risk, the impact, and the cost of their implementation; their realization is done on GrSMs and

involves solving a constrained (multi–objective) optimization problem [114, 30, 33]. Aspects concerning the

cost of mitigation actions, e.g. blocking or disabling a service, patching a vulnerability, etc. are organization–
specific and depend on a service’s or component’s criticality. The availability of mitigation actions is available

from the CVSS’s remediation level (RL) temporal metric, which may take five values: official fix (O), temporary

fix (T), workaround (W), unavailable (U) and not defined (X) –more details about the mitigation actions are

provided in Section 6.3.

Risk mitigation strategies on GrSMs that aim at proactively minimizing an IT system’s risks are iterative in

nature; this is due to the selection of some iterative solver for the optimization problem at hand or due to

the implementation of a greedy algorithm for tackling efficiency. In the latter case, the steps are [33]:

▪ Selection of exploit node from the attack graph based on centrality measures.

▪ Selection of mitigation action based their cost.

At each iteration, the first step determines the exploit node to be removed from the GrSM and the second

step to decide the mitigation action to be taken. This continues until the sum of the mitigation actions’ cost

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 93

exceeds the available security budget. In each iteration, an exploit node is removed, the graph is updated,

and the new mitigation metrics are calculated; a high–level block diagram is given in Figure 6.3.

Figure 6.3. Attack graph–based countermeasure selection

On the other hand, risk mitigation strategies on GrSMs that aim at operating reactively, select and activate

new countermeasures so as to stop the propagation of ongoing attacks. On the basis of real instances of

detected security violations, a priori and a posteriori steps of an attacker are mapped, and the level of risks

of the GrSM nodes is updated. The set of the available countermeasures is stored in a database before the

countermeasure selection process. To conduct the reactive countermeasure selection process, a number of

metrics have been proposed in the literature [33], like intrusion response cost assessment (IRCA), return on

investment (ROI), return on attack (ROA), return on security investment (ROSI), return on response investment

(RORI), and stateful RORI (StRORI) [31, 32].

In addition to the above techniques, a number of advanced mitigation strategies have been proposed, see

e.g. the work of [85, 86], that model the defender as an intelligent agent and rely on dynamic programming

techniques for deriving the optimal (in the long–term) defense decisions (i.e. mitigation actions as a response

to an ongoing attack), maximizing a properly designed utility function. Such approaches constitute a perfect

match with the game–theoretic framework of Cyber–Trust and will be further explored in the forthcoming

deliverable D5.1 that will present the state–of–the–art in this area.

6.3 Mitigation actions

Regardless the specific mitigation strategy having been established in the context of a static or dynamic risk

management framework, the mitigation actions available to the defender need to be known in advance for

dealing with the risks and threats identified during an IT system’s lifetime. This is also particularly important
in the design of the intelligent cyber–defense capabilities of Cyber–Trust, where the mitigation decisions will

be made in an autonomous manner. Thus, in this section a classification of the mitigation actions is given (in

Section 6.3.1) along with a number of available tools for enforcing the defensive decisions having been made

(in Section 6.3.2).

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 94

6.3.1 Mitigation actions classification

Mitigation actions are typically classified as proactive (or preventive) and reactive. Although the needs of

Cyber–Trust are primarily focusing on the latter for the efficient implementation of the iIRS, the knowledge

of the former is useful for the risk assessment module of the trust management system (TMS). Since the

implementation of the mitigation actions often relies on common technical controls, they are expected to

share other characteristics as well, like the implementation costs, their effectiveness, etc. Thus, working with

classes or taxonomies of mitigation actions, like NIST’s extensible configuration checklist description format

(XCCDF) specification [99], allows to reason about their properties in a more efficient way.

6.3.1.1 High–level taxonomy

The taxonomy of the available risk mitigation actions of Table 6.3 has been provided by NIST and is included

here to facilitate the subsequent organization of an intelligent defender’s available actions and also support

the automated and interactive remediation.

Table 6.3. Classes of risk mitigation actions [99]

Class Description

Configure Each asset stores configuration files. Among others, these files include information like

functional settings that determine how the asset operates, ports that are active for

operations and how they are configured, services that are enabled. The process of

ensuring proper configuration involves a process of periodically checking assets against a

defined configuration state which is known to be the most secure. For example, if a server

allows directory listing, this will provide useful information to an attacker.

Combination The combination of two approaches is a self–explanatory term. It includes cases where

only one remediation technique is not enough. For example, if a host is vulnerable it might

be due to insecure configuration and a missing patch for a known vulnerability, in which

case both the adjustment of the configuration and the application of the patch are

necessary.

Disable The disablement/uninstallation of assets’ components is necessary to decrease the attack

surface. Usually assets come with preinstalled applications and default configurations that

need to be uninstalled/disabled. Also, when under attack, the temporary disablement of

a service can be crucial in a time–sensitive situation. For example, as the SSL and TLS

1.0/1.1 protocols are vulnerable, a website administrator should disable them and leave

only TLS 1.2 and 1.3 enabled.

Enable The need to enable/install previously disabled/missing components of an asset. It can

occur when detecting a service that is disabled when it is recommended to be enabled for

security reasons. It can also occur when a new component is released and its installment

is recommended for security reasons. For example, when a WordPress site is vulnerable

to e.g. XML–RPC attacks, there are available plugins that can be installed.

Patch This involves the application of a patch, hotfix, update, etc. Patching is the process of

repairing system vulnerabilities which are discovered after the components have been

released on the market. A systematic checking and patch application mechanism is

essential for large infrastructures. Failing to apply patches as soon as they are released

leaves the assets vulnerable to attacks that can in many cases be easily deployed just by

using publicly available exploit. For example, a host running MS Windows that hasn’t been
patched against the vulnerability used by the WannaCry ransomware can be compromised

using publicly available exploit code and can result in complete host takeover.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 95

Policy This refers to the cases where remediation requires out–of–band adjustments to policies

or procedures. Policies are sets of principles that are intended to guide actions of an

organization. When a policy followed in a certain organizational procedure is found to

pose a security threat, it could be necessary to be adjusted. For example, an organization

that wants to provide WiFi access to clients/visitors should have a policy in place that

restricts the access rights that can be obtained through this WiFi connection, e.g. by

setting up an isolated guest WiFi.

Restrict This includes the adjustment of permissions, access rights, filters, or other restrictions.

Restrictions are placed in a network, in user accounts, and more in order to enforce access

control and control the access rights and data accessibility depending on each users’
credibility. For example, when detecting an employee’s account as the source of an
ongoing attack, the restriction of its access rights could be one possible mitigation.

Update This refers to the installation, upgrade or update of the IT system. Although this has some

overlap with the patch class, it refers to the case of installing major updates of software/

hardware components of an IT system.

In case that a particular risk mitigation action cannot be classified in one of the above classes, then it will be

said to be in the other class (this corresponds to the class unknown of [99]).

6.3.1.2 Proactive actions

The use of the preventive mode is to evaluate the levels of risk that reside in the system prior to detecting

attack instances. Common risk mitigation actions of this phase have been included in Table 6.4. As already

mentioned above, emphasis is placed on the degree at which a mitigation action can be automated; this is

reflected by specifically including such information in the action’s description.

Table 6.4. Classification of proactive risk mitigation actions

Action Class Description

System

reconfiguration

Configure Reconfiguration of an asset in order to match a configuration baseline

that is known to be more secure.

▪ Automation: The secure configuration of assets can be automated in

most cases on host level (e.g. servers, routers, switches, employees’
machines, etc.) as there are various tools for security configuration

management (SCM) helping reduce the manual labor.

▪ Example: If a server allows directory listing, an attacker can simply

list directories, which can lead him to useful information. By using an

SCM tool this would be disabled automatically.

System re–
imaging or

rebuild

Other Wiping all the data and performing a clean install to bring a system to

its default state.

▪ Automation: It can be automated on the network level using network

boot options for network–based installation77,78.

▪ Example: For an organization that provides access to its

guests/clients to dedicated desktop computers, a good security

77 https://www.syslinux.org/wiki/index.php?title=WDSLINUX
78 https://www.ibm.com/support/knowledgecenter/en/SS63NW_9.5.0/com.ibm.bigfix.lifecycle.doc/Lifecycle/OSD_

Users_Guide/c_imaging_windows.html

https://www.syslinux.org/wiki/index.php?title=WDSLINUX
https://www.ibm.com/support/knowledgecenter/en/SS63NW_9.5.0/com.ibm.bigfix.lifecycle.doc/Lifecycle/OSD_Users_Guide/c_imaging_windows.html
https://www.ibm.com/support/knowledgecenter/en/SS63NW_9.5.0/com.ibm.bigfix.lifecycle.doc/Lifecycle/OSD_Users_Guide/c_imaging_windows.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 96

practice would be setting up an automatic reimaging task for these

machines.

System

patching

Patch Patching is the process of repairing system vulnerabilities discovered

after the components have been released on the market.

▪ Automation: The detection of missing patches and their installation

is a process that is automated by security management tools on host

level. In many cases they will be the same tools that automate

System reconfiguration as seen above.

▪ Example: A host running MS Windows that hasn’t been patched
against the vulnerability that was used by the WannaCry

ransomware attack can be compromised using publicly available

exploit code and can result in complete host takeover. If the

Windows automatic updating option is enabled this will not be

possible.

Software

update

Update Similar to system patching.

Deletion/

disablement of

accounts

Policy The deletion/disablement of an account when it’s not being used any
more as part of organizational policy.

▪ Automation: It can be simply automated on host level.

▪ Example: If an inactive account deletion/disablement policy is not in

place, an employee that didn’t leave in good terms with the
organization might use his account to inflict damage.

Deletion of files Policy Refers to the deletion of unnecessary files that pose a threat if leaked

so as to reduce such a risk.

▪ Automation: This task can be automated on host and network level

(distributed storage). On host level a simple file deletion policy

provided by the operating system can be used. On network level, e.g.

for files that are stored in the cloud, the cloud platforms provide file

deletion policies that can be set up.

▪ Example: An organization may be required to retain documents for a

period of time because of compliance, legal, or other business

requirements. However, if the organization keeps documents longer

than required, it creates unnecessary legal risk.

Secure service

development

to prevent

insider attacks

Combination

(restrict/

other)

Devise secure service development methods that significantly prevent

or reduce the likelihood of insider attacks.

▪ Example: It’s very easy for a database administrator to become an
insider threat and at some extent this happens because of insecure

development from the development phase.

Proper

configuration

of access

control

Combination

(restrict/

configure)

Includes the proper configuration of the access given to user’s accounts
or guests without an account (where applicable), but also the proper

configuration of the applications of which data need to be protected

and network access control.

▪ Automation: The user accounts access control can be automated by

user provisioning software. The application access control can be

done through proper configuration as mentioned above. The

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 97

network access control can be automated via the use of rules in a

firewall, IP filter etc.79

▪ Example: If a database has not properly configured the access rights,

a lower level employee could gain access to classified data.

Monitoring

service for

early detection

Other The use of host/network–based monitoring module to examine traffic

and detect attacks as early as possible.

▪ Automation: There are various tools available that can automate the

monitoring process on every level. It can be on the network level with

a NIDS, it can be on the firewall level with a next generation firewall

(NGFW) and on the host level with an host–based intrusion detection

system (HIDS).

▪ Example: If a DDoS attack is at its beginning and the NIDS detects it

and reports it to the network administrator, there is a possibility of

stopping the attack in its tracks.

Test cases to

check for issues

Combination

(all)/other

Deploy real–life attack scenarios in order to stress–test the systems and

detect possible issues that occur.

▪ Automation: There could be some attack scenarios that could be

carried out completely automatically from a set of hosts that would

deploy attacks against the network but for more complex scenarios

manual labor would be needed.

▪ Example: Many organizations use red team–blue team exercises to

evaluate their defensive capability and harden their security.

Personnel

education and

training

Other Provide the personnel with the knowledge required for them to apply

an organization’s security practices.

▪ Example: An organization could provide scheduled seminars to keep

the securities employee up to date.

Search for

malware

Other Searching the hosts and the nodes of a network for malware infection.

▪ Automation: This process can be done both on host and network

level. On host level tools like anti–virus can be used. On network level

malware can be detected by monitoring traffic with traffic analysis

tools e.g. Cisco ETA.

▪ Example: An anti–virus tool can be programmed to conduct

scheduled scans and automatically remove or quarantine the

malware detected.

The actions presented in the above table are the result of best practices’ analysis by considering a number of
technical and academic sources; see e.g. [99, 100, 129, 27, 89] and the references therein.

6.3.1.3 Reactive actions

In the reactive mode, new countermeasures are selected and activated to stop the propagation of ongoing

attacks. When real attack incidents occur, the a priori and a posteriori steps of the attacker are mapped, and

the level of risks computed initially (i.e. in the preventive mode) are updated. Common risk mitigation actions

79 https://searchsecurity.techtarget.com/magazineContent/How–to–use–an–automated–user–provisioning–system–
for–access–control

https://searchsecurity.techtarget.com/magazineContent/How-to-use-an-automated-user-provisioning-system-for-access-control
https://searchsecurity.techtarget.com/magazineContent/How-to-use-an-automated-user-provisioning-system-for-access-control

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 98

of this phase are included in Table 6.5. Likewise, information about the degree at which an action can be

automated is included in its description.

Table 6.5. Classification of reactive risk mitigation actions

Action Class Description

Network

isolation

Combination

(restrict/

configure/

disable)

The isolation of a specific part of or the whole network that is under

attack or infected in order to block the propagation to the rest of the

network/other networks.

▪ Automation: The automation of this process can be done on an

NGFW/IPS level by adding the appropriate rules.

▪ Example: Having added the appropriate rules to a an IPS like Snort,

(see Section 6.3.2) when it detects an attack that creates a situation

matching the rule, it will take the necessary actions to isolate the

corresponding part of the network.

Affected

systems

isolation

Combination

(restrict/

configure/

disable)

The isolation of a host/number of hosts that have been infected in order

to block the propagation to further hosts on the network.

▪ Automation: If the infection is detected on the network level, then

properly configured tools like NGFW/IPS can isolate the host. If the

infection is detected on the host level, then there should be some

sort of agent installed on the host that would alert the responsible

tool to isolate the host from the network. That tool could be either

host–based or network–based.

▪ Example: The anti–virus detects a malware, changes the status of the

host as infected, the NGFW monitoring the network blocks inbound

and outbound traffic to/from the infected host.

Stop a service

or process

Disable An attack can target a specific service/process, in this case stopping the

service/process could stop the attack.

▪ Automation: Upon detection of the attack the defending mechanism

can stop the service. This can be done for both network–based and

host–based services.

▪ Example: When a DDoS attack against an Apache Server is deployed,

a Web application firewall can block the Apache service on port 80.

Disabling of

account

Restrict Disabling an account when it’s detected to be used for malicious activity
or when it’s under attack.

▪ Automation: This can be easily automated in case of someone trying

to break in the account by proper configuration of login service. In

the case of malicious activity coming from the account an alert to the

administrator would be issued.

▪ Example: Malicious traffic is detected on the network, and the host

origin is marked as being infected. The account currently logged in is

determined and an alert is issued to the administrator.

Add

firewall/IPS

rule

Configure Adding a rule to the Firewall/NGFW/IPS in order to block the malicious

activity.

▪ Automation: It can be automated on a host and the network level

through the use of Firewall/NGFW/IPS.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 99

▪ Example: A DDoS attack is coming from a specific set of IP addresses

and rules are created for blocking the inbound traffic from these IP

addresses.

Blocking of

outbound or

inbound traffic

Configure Blocking the outbound/incoming traffic associated with e.g. a specific

IP address.

▪ Automation: It can be automated on host and network level with the

use of Firewall/NGFW/IPS.

▪ Example: If an attack is detected that comes from a host inside the

network, then a rule blocking the traffic with this host’s IP address is
applied.

Backup

forensic copies

Other Backup of forensic copies while an attack is happening before the

attackers delete forensic evidence.

▪ Automation: This can be automated on network level and on host

level with a scheduled task or when the network/host is marked as

under attack.

▪ Example: A host is detected and marked as being compromised. The

system logs are sent to an external system on the network for further

process.

Take the

system offline

Disable In extreme cases when the damage of the attack is more massive than

service unavailability, the system is taken offline to stop the attack.

▪ Automation: This can be automated on the level of alerting the

administrator that this is the most cost–efficient solution, and the

administrator will then allow the system to be taken offline.

▪ Example: When an attacker seems to have access to data that pose

a great threat to an organization if stolen and another time–sensitive

mitigation is not found, the system will be taken offline to cut access

to the attacker.

Correlation

with external

organizations

Other Receiving help or helpful information from external organizations to

mitigate the attack.

▪ Automation: An alert to the other organization could be issued.

▪ Example: The same attack could target two different organizations.

The second one, knowing that the other had already been targeted,

can ask for information gathered on the attack so to have a more

efficient defensive response.

Likewise, the actions presented in the above table constitute part of best practices that have been proposed

in the literature by a number of technical and academic sources; see e.g. [99, 100, 129, 27, 89] and the

references therein.

6.3.2 Tools for enforcing mitigation

The mitigation actions presented in the previous subsections need to be enforced by the available (or new)

security controls in an organization’s IT infrastructure. Particularly, for the reactive mitigation actions, this

process is automated at the host or network level with the use of Firewall/NGFW/IPS. Hence, in the sequel,

we present a number of well–known tools that are capable of performing this step. The functionalities of the

tools vary from intrusion detection/prevention (e.g. Snort, Suricata, Bro, etc.) to system hardening (e.g. Lynis,

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 100

Bastille, Jshielder, etc.). In order to allow for the automated mitigation of cyber–attacks, the use of Snort or

Suricata seems to be best options available.

6.3.2.1 Snort

Snort80,81 (GPL v2.0 license) is an open–source network IPS/IDS that performs real–time traffic analysis and

generates alerts when threats are detected. It can also perform protocol analysis, content searching or

matching, and detect a variety of attacks and probes, such as buffer overflows, OS fingerprinting, semantic

URL attacks, server message block probes, and stealth port scans. Snort can be used in three different modes

of operation, namely sniffer mode (reads network packets and displays them on the console), packet logger

mode (logs packets to the disk), and network intrusion detection mode (monitors network traffic and analyzes

it against a rule set defined by the user). In the last mode, Snort performs actions, like monitoring of network

traffic and analyzing against a defined rule set, performing attack classification, and invoking actions against

matched rules. Useful tools for managing Snort include:

▪ PulledPork82 (an open–source tool that automatically downloads the latest Snort/Suricata rules);

▪ Barnyard283 (an open–source software tool that takes Snort/Suricata output and writes it to an SQL

database to reduce load on the system); and

▪ Snorby84 (an open–source web–based graphical interface for viewing and clearing events logged by

Snort/Suricata).

6.3.2.2 Suricata

Suricata85 (GPL v2.0 license) is a free and open–source network threat detection engine. It works as an IDS,

an IPS and network security manager (NSM). It utilizes externally developed rule sets to monitor network

traffic and provide alerts to the system administrator when suspicious events occur. Furthermore, it provides

unified output functionality and pluggable library options to accept API calls from other applications. Some

further features of Suricata include86 the ability to perform off–line analysis of PCAP files, decoding of packets

and protocols, and utilize information about the reputation of IPs. It is extensible through Lua scripting and

can be managed by the tools that were also presented above in Snort.

6.3.2.3 Bro (aka Zeek)

Bro87 (BSD license) is an open–source, UNIX–based NIDS which monitors network traffic and looks for

suspicious activity. It performs attack detection through signature–based detection methods but also

through anomaly–based detection methods. Furthermore, it keeps extensive logs which are really useful for

forensics. Some additional features include the ability to perform offline traffic analysis, analysis of

application–layer protocols (including files’ contents), as well as detection and analysis of tunnels. It can use

external programs and alternative backends, while it is extensible through a Turing–complete language for

expressing arbitrary analysis tasks. Useful tools88 to be used with Bro include:

▪ Broccoli (the Bro client communications library);

▪ Syslog2bro (tool to send syslog messages to Bro via Broccoli); and

80 https://www.snort.org/
81 https://snort–org–site.s3.amazonaws.com/
82 https://github.com/shirkdog/pulledpork
83 https://github.com/firnsy/barnyard2
84 https://github.com/Snorby/snorby
85 https://suricata–ids.org/
86 https://suricata–ids.org/features/all–features/
87 https://www.bro.org/
88 https://www.bro.org/community/software.html

https://www.snort.org/
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/116/original/Snort_rule_infographic.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20181128%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20181128T141822Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=60aca5c7eb581bf3c9f7852e8500c2db1157040bb059bb092a057f099d98e951
https://github.com/shirkdog/pulledpork
https://github.com/firnsy/barnyard2
https://github.com/Snorby/snorby
https://suricata-ids.org/
https://suricata-ids.org/features/all-features/
https://www.bro.org/
https://www.bro.org/community/software.html

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 101

▪ Snort (integrates with Bro).

6.3.2.4 Sagan

Sagan89 (BSD–3–Clause license) is an open–source high performance, real–time log analysis and correlation

engine with the ability of monitoring any type of device or system. It uses a Snort–like rule set for detecting

malicious activities in a network. This means that the events detected can be stored to a Snort database

(unified2/barnyard2) and the event will be correlated with Snort. This was done to maintain compatibility

with the rule management software (pulledpork). Additionally, it is compatible with all Snort consoles, like

Snorby and Sguil. It supports many different output formats, log normalization, GeoIP detection and script

execution on event. It is rather a follow–up of Snort with not much additional features to offer.

6.3.2.5 Bastille

Bastille90 (GPL v2.0 license) is a system–hardening/lockdown program that enhances the security of a Unix

host. It configures daemons, system settings and firewalls to be more secure. It is composed of a set of Perl

scripts that run as an interactive program, asking questions for each step of the hardening process. For each

step, an explanation is provided, to help the user understand what security measures will be applied and

why, but also the option to choose whether the measures will be applied or not. Furthermore, the user’s
choices can be saved in a file for use in remote deployment to other machines.

6.3.2.6 CIS–CAT

The center for Internet security (CIS) configuration assessment tool (CAT)91 (license model is not available)

compares the configuration of IT systems to CIS benchmarks and allows system administrators to ensure the

security status and that it conforms to the configuration specified in the benchmark. The process performed,

referred to as benchmarking, is the process of comparing the organization’s activities to similar organizations’
or to accepted best practices. The free version, CIS–CAT Lite, provides benchmarks for Windows 10, Ubuntu,

Mac OS and Google Chrome, and also provides a GUI and HTML report export functionality.

6.3.2.7 Docker Bench for Security

Docker Bench for Security92 (Apache v2.0 license) is a set of Bash shell scripts that check common best

practices for deploying Docker containers in a production environment. The tests are automated and useful

and well–organized output is given to the user. The tests are compliant with a CIS Benchmark created for

Docker93. Furthermore, it’s open–source and free to use.

6.3.2.8 Jshielder

Jshielder94 (GPL v3.0 license) is an open–source automated hardening Bash script designed for Linux servers.

Its aim is to help system administrators and developers to secure their Linux servers. It installs the necessary

packages needed to host a web application and hardens the Linux server with little user interaction. There is

also a newly added script that follows the CIS Benchmark Guidance for securing Ubuntu Linux systems.

89 https://quadrantsec.com/sagan_log_analysis_engine/
90 http://bastille–linux.sourceforge.net
91 https://learn.cisecurity.org/cis–cat–landing–page
92 https://github.com/docker/docker–bench–security
93 https://www.cisecurity.org/benchmark/docker/
94 https://github.com/Jsitech/JShielder

https://quadrantsec.com/sagan_log_analysis_engine/
http://bastille-linux.sourceforge.net/
https://learn.cisecurity.org/cis-cat-landing-page
https://github.com/docker/docker-bench-security
https://www.cisecurity.org/benchmark/docker/
https://github.com/Jsitech/JShielder

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 102

6.3.2.9 Lynis

Lynis95 (GPL v3.0 license) is an open–source tool used for auditing, system hardening, and compliance testing

for UNIX–based systems. It provides insights on how well a system is hardened and what an administrator

can do to enhance its security defenses. It has various uses, such as security auditing, compliance testing,

penetration testing, vulnerability detection and system hardening. It is extensible through available plugins

and supports many standards, including CIS Benchmarks, NIST, NSA, and OpenSCAP data.

6.3.2.10 Microsoft attack surface analyzer

Microsoft attack surface analyzer96 (license by Microsoft) is a tool meant primarily to understand the changes

that occur in the attack surface of a Windows OS after the installation of additional software. It works by

analyzing the files and registry keys that have been added or updated. More specifically, it runs before the

installation of the additional software in question in order to create a baseline. After the organization of the

software it runs again to analyze the changes in the attack surface based on the baseline created before.

6.3.2.11 Microsoft security compliance toolkit

Microsoft security compliance toolkit (SCT)97 (license by Microsoft) is a set of tools enabling administrators

to compare their enterprise’s group policy objects (GPOs) with Microsoft–recommended GPO baselines or

other baselines, edit them, store them in files, and apply them. The set consists of:

▪ Security baselines for Windows 10, Windows Server, and Microsoft Office;

▪ Policy analyzer tool (analyze and compare sets of GPOs); and

▪ Local GPO tool (command–line utility to help automate local group policy management).

6.3.2.12 OpenSCAP

The security content automation protocol (SCAP)98 (LGPL v2.1 license) is a U.S. standard maintained by NIST.

The OpenSCAP project is a collection of open–source tools for implementing and enforcing this standard. It

includes the following tools:

▪ OpenSCAP base (command–line configuration and vulnerability scanning);

▪ OpenSCAP daemon (continuous evaluation of the infrastructure’s compliance with a SCAP policy);

▪ SCAP workbench (custom security profile creation and remote system scanning from a desktop);

▪ SCAPTimony (centralized storage of scan results); and

▪ Atomic scan (to scan Docker containers for vulnerabilities and compliance issues).

6.3.2.13 Zeus

Zeus is an Amazon web services (AWS)99 (license by MIT) auditing and hardening tool. It checks the security

settings according to the profiles the user creates and changes them based on the recommendations of the

CIS AWS Benchmark. Identity and access management, networking, monitoring, and logging are included

amongst its functionalities.

95 https://cisofy.com/lynis/
96 https://www.microsoft.com/en–us/download/details.aspx?id=24487
97 https://www.microsoft.com/en–us/download/details.aspx?id=55319
98 https://csrc.nist.gov/projects/security–content–automation–protocol
99 https://github.com/DenizParlak/Zeus

https://cisofy.com/lynis/
https://www.microsoft.com/en-us/download/details.aspx?id=24487
https://www.microsoft.com/en-us/download/details.aspx?id=55319
https://csrc.nist.gov/projects/security-content-automation-protocol
https://github.com/DenizParlak/Zeus

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 103

7. Cyber–attackers’ profiling

The term cyber–attackers refers to the individuals or groups targeting infrastructures, computer networks

and systems along with their IoT counterparts (e.g. Mobile phones, IP cameras, smart houses, etc.). They

have malicious intent that varies based on the type and the motivation of the attacker. Three categories of

attackers can be identified regarding their location and knowledge regarding the target organization [87]:

▪ Internal to the organization. They are also known as insiders, and they have high level of knowledge

about the target’s network, systems, security, policies and procedures. According to the 15th annual

CSI Computer Crime and Security Survey reports [20], there are two threat vectors contributing to

insider threats, namely organization’s employees having: (1) malicious intents (e.g. to disclose and/or

sale non–public information; (2) non–malicious intents (e.g. they have made some unintentional

mistake). The majority of the losses are due to the latter threat vector.

▪ External to the organization. Compared to the insider threats, such attackers have to spend a great

amount of time before the attack for gathering information on the target, due to their limited prior

knowledge.

▪ Mixed groups. They are comprised of both internal and external attackers.

7.1 Taxonomy of attackers

This section presents a taxonomy of cybercrime actors, providing information on their motives, scope, targets

and level of expertise. In general, the cybercrime actors are broken down into seven categories:

▪ Virus and hacking tools coders: Individuals or teams of expert programmers, elite-hacking tool coders

with excellent computer skills. The main focus of these actors is to develop and distribute malicious

software (i.e. computer viruses, worms, rootkits, exploits, etc.) and hacking toolkits possibly to have

a financial gain. The main buyers are non–expert individuals who want to become hackers (e.g. Script

kiddies) [126]. They can launch and orchestrate complex attacks.

▪ Black hat hackers: Hackers (regardless whether they are black, white, or grey hat) are using almost

the same tools and techniques, but with different motives and goals. In particular, black hat hackers

are hackers with excellent computer skills (elite) that undergo illegal activities – other actors of this

taxonomy are also characterized as black hats in the literature (e.g. hacktivists). Their primary motive

is to earn money (e.g. Hacking as a Service) and in certain cases to cause significant damages (e.g.

destroy/steal confidential data) [78, 126].

▪ Script kiddies (SK) and cyber–punks (CP): These two groups have many similarities. As they are not

professional hackers, they use existing tools to launch attacks due to limited technical knowledge.

SK’s main motives are fun, fame and adrenaline rush while CP’s motives are mainly based on their

ideology against the authorities, to gain fame and public recognition [122].

▪ Hacktivists: Hacktivism, one of the digital forms of activism, is employing hacking skills and tools to

attack governmental institutions and private organizations. Hacktivists are working in groups that are

formed by socio–political and ideological beliefs. They are acting anonymously and share their ideas

aggressively using criticism instead of engaging in healthy debates [140].

▪ Cyber–warfare/state–sponsored attackers: They are sponsored and driven by countries aiming at

causing damage by gaining illegal access to state and trade secrets, technology concepts, ideas and

plans, and in general artefacts of high value for a country or state. They quite often target at critical

infrastructures and in general they seek to damage a state’s economy [118].

▪ Cyber–terrorists: Terrorist groups are increasingly using the Web to recruit and train new members,

share information, and organize attacks in the real world. Furthermore, terrorist organizations using

the anonymity and security of the Dark Web, disseminate training guidelines for cyberattacks, to less

experienced supporters [22]. These groups will either employ or recruit Black hat hackers, due to

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 104

their ideology and beliefs, that will subsequently act on their behalf to launch cyber–attacks (e.g.

United Cyber Caliphate).

▪ Cyber–criminals: It is common knowledge that criminals are using the Web to sell and transfer illicit

goods and materials. For this taxonomy, the term cyber–criminal is used for a variety of cybercrime

stakeholders in order to conduct traditional crimes through the use of computer systems (e.g. drug

and firearm dealers, production and distribution of child abuse material, financial fraud, human

trafficking, etc.).

The aforementioned actors can be distinguished based on their motivation, objectives, and skills. In the

deliverable D2.3 (Cyber–Trust use cases) two main domains were identified, Smart Homes and Mobile

(cellular) Devices, where the Internet service provider (ISP) and the telecommunications operator provide the

backbone infrastructure; thus, attackers can not only target both domains, but also the infrastructure that is

being provided.

Based on the aforementioned taxonomy, Cybercriminals and Hacktivists have the least motivation to target

these domains and their respective infrastructures. Thus, the subsequent analysis in Sections 7.2 and 7.3 will

exclude these two categories. Furthermore, the deliverable D2.1 (Threat landscape: trends and methods)

introduced eight threat categories:

▪ Network–level threats: this includes threats pertaining to the three bottom layers of the OSI network

reference model (physical, data link, and network layer). Threats for the SDN infrastructure are also

included in this group.

▪ Cryptography–related threats: this group includes threats related to the lack of cryptography, the

use of weak protocols and ciphers or cryptanalysis.

▪ Hardware/sensor–level threats, including threats related to the hardware or sensors and actuators.

Since hardware is in many cases coupled with the firmware, some firmware attacks are included

here.

▪ Malware: this group relates to software intentionally designed to cause damage to a computer,

server or computer network.

▪ Threats for smart grids: this includes threats that are specific to the environment of smart grids.

▪ Technical/application development–related threats: this category includes threats that are related to

the application layer.

▪ Threats necessitating actions by the victim user: this is related to attacks attempting to trick victim

users to (unwillingly) cooperate to the attack (e.g. phishing).

▪ Generic / miscellaneous threats: this category contains all other threats, including policy–related

threats, targeted attacks as well as threats that could not be meaningfully placed under the seven

specific categories above.

To yield the attackers’ profile, the involvement of threat actors in launching attacks from the above threat

categories, which fit into the context of Cyber–Trust, will be discussed; as a result, the cryptography–related

threats will be excluded from the following analysis (the same holds for the threats necessitating actions by

the victim user, as these are mitigated by increasing awareness and intensifying security training). The threat

category, threats for smart grid will be replaced from the critical infrastructures threat category in order to

encapsulate all relevant infrastructures.

7.2 Attackers modelling and related metrics

In this section the correlation of the aforementioned taxonomy of attackers will be depicted with:

▪ The threat posed based their skill level [23]; this correlation will provide a mapping of the technical

skills of the attackers and their involvement in the specific threat categories.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 105

▪ The various attack metrics (attack vector, attack complexity, and privileges required for exploiting a

vulnerability) as provided by the CVSS standard [6].

Table 7.1 provides a mapping between the aforementioned type of attackers and threat categories; it is based

on their motives, objectives and skills (thus, illustrating what they would target at and by what means).

Table 7.1: Threat actors and their involvement/capability level

 Virus and

hacking

tools

coders

Black hat

hackers

Script kiddies

& cyber–punks

Cyber–
warfare/state

sponsored

attackers

Cyber–
terrorists

Network–level

attacks
X X X X X

Hardware/sensor–
level threats (physical

damage, etc.)

 X X X

Malware X X X X X

Critical infrastructure

attacks
X X X X

Application–level

attacks
X X X X X

X High capability level and primary threat

X Low capability level or not primary threat

Table 7.2 provides information on the correlation between the attackers’ profile and the CVSS metrics in

terms of possible exploitability and skills. The metrics that have been employed from the CVSS standard

contribute in determining the likelihoods of (a) launching an attack and (b) succeeding in an attack for each

type of attacker. As shown in Section 6.2, the attack likelihood is determined based on the existence of known

vulnerabilities in a target system, along with the availability of known exploits (which can be classified as easy

to use or complex to use); moreover, the computation of a successful exploitation likelihood depends on the

attack complexity (low/high), the attack vector (network/adjacent/local/physical), as well as, the privileges

required (none/low/high).

Table 7.2: CVSS metrics and attacker's profile

 Virus and

hacking

tools coders

Black hat

hackers

Script kiddies &

cyber–punks

Cyber–
warfare/stat

e sponsored

attackers

Cyber–
terrorists

In
fo

Vulnerability (publicly-known) existence

Yes X X X X X

No X X X X

A
tt

a
c

k
 Exploit’s (public) availability

Yes X X X X X

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 106

No X X X X

Exploit’s complexity

Easy to use X X X X X

Complex to use X X X X

E
x

p
lo

it
a

ti
o

n
 l

ik
e

li
h

o
o

d

Attack vector

Network X X X X X

Adjacent X X X X X

Local X X X X X

Physical X X X

Attack complexity

Low X X X X X

High X X X X

Privileges required

None X X X X X

Low X X X X X

High X X X X X

X High capability of exploitation and attack

X Low capability of exploitation and attack

Table 7.3 below presents the number of known vulnerabilities categorized based on their CVSS score [23].

Even though there exist 14.961 vulnerabilities with score in the range 9–10, this doesn’t mean that all these

vulnerabilities are complex to exploit. By analyzing these vulnerabilities, it is evident that even SK & CP could

potentially use them.

Table 7.3: Distribution of all vulnerabilities by CVSS scores

CVSS Score
Number of

vulnerabilities
Percentage CVSS Score

Number of

vulnerabilities
Percentage

0–1 01.731 01.60% 5–6 21.359 19.30%

1–2 00.846 00.80% 6–7 14.741 13.30%

2–3 04.297 03.90% 7–8 25.044 22.60%

3–4 03.690 03.30% 8–9 00.494 00.40%

4–5 23.512 21.20% 9–10 14.961 13.50%

7.3 Resources and vulnerability markets

In this section, the current state of vulnerability markets is presented. To this extend, it is important to briefly

present the distribution of vulnerabilities based on CVSS and analyze their markets’ types. According to the
taxonomy proposed in [6, 127] there are primarily three types of stakeholders:

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 107

▪ Vulnerability producers: this includes freelance discoverers/sellers as well as captive discoverers (i.e.

researchers, organization employers etc.).

▪ Vulnerability markets: this includes both regulated and unregulated markets.

▪ Vulnerability consumers: this refers to the taxonomy of attackers presented in Section 7.1.

The correlation among the above stakeholders is illustrated in Figure 7.1. It is shown that security companies

(employees) can possibly have ties to unregulated markets and sell vulnerabilities having been found while

performing their daily job operations (e.g. penetration testing) under the regulated framework (grey hat

hackers). Furthermore, attackers of type SK & CP can take part in bug bounties in the context of reward

programs, depending on their skills.

Figure 7.1: Vulnerability markets and attackers

The regulated and unregulated types of vulnerability/exploit markets are further described in the following

sections.

7.3.1 Regulated markets’ value

Regarding the regulated markets it is important to discuss the Reward programs in order to gain a clear view

on the price range of vulnerabilities. These are bounty programs founded by companies, like Google, Apple,

Microsoft, United Airlines and Master–card, governmental institutions, like the US Pentagon, and academic

institutions, like MIT [81]. As an example, Google has paid approximately 12M USD during 2010–2018, while

the largest single payout took place in 2017 and reached the 125K USD [35]. Furthermore, there are

companies, like HackerOne, which provide bug bounty and vulnerability disclosure platforms and organize

bug bounties for their clients; as of December 2017, they have paid in total more than 23.5M USD in bug

bounties [39]. On the other hand, as shown in Figure 7.1, there are companies operating as vulnerability

brokers that buy zero–day exploits, like Zerodium. From 2015 they are publishing a price list regarding zero–
day exploits and they offer up to 1.5M USD per submission (see Figure 7.2).

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 108

Figure 7.2: Zerodium mobile devices 0–day exploits price list

To summarize, the prices in the regulated markets range from few thousands up to 1.5M USD based on the

characteristics of the vulnerability/exploit. As the numbers indicate, it is a profitable market. Nevertheless,

one has to be very skillful to identify a vulnerability or an exploit that will be bought for high price.

7.3.2 Unregulated markets’ value

The unregulated markets are actually divided in Gray markets and Black markets. It is highly difficult to find

and access unregulated markets, especially in the Dark web as they tend to keep the vulnerabilities private.

Governmental agencies are using this market (especially Gray markets) to buy and use vulnerabilities for both

offensive and defensive purposes [34]. Thus, researching regarding the pricing of zero–day vulnerabilities

and exploit kits it is not an easy task and only few information can be found (and not necessarily up to date).

In most occasions are based on [9], [127], [34] a single zero–day vulnerability can be found from 20.000 USD

to 100.000 USD while in few occasions can go up to 150–300K USD [1]. Table 7.4 provides an overview of the

price list of exploit kits from 2011 up until 2013 [1].

Table 7.4: Price of exploit kits over time

Exploit kit Price (USD) Year

Katrin 25 daily 2011

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 109

Robopak 150 weekly or 500 monthly 2011

Blackhole v1.1.0 1.5K 2011

Blackhole v1.2.1 700 quarterly or 1.5K annually 2011

Bleeding Life v3.0 1K 2011

Phoenix v3.0 2.2K/2.7K per single/multithreaded domain 2011

Eleonore v1.6.3a and v1.6.4 2K 2011

Eleonore v1.6.2 2.5K–3K 2012

Phoenix (v2.3.12) 2.2K per domain 2012

Styx sploit pack rental 3K monthly 2012

Exploit kits that employ botnets up to 10K 2012

CritXPack 400 weekly 2012

Phoenix (v3.1.15) 1K–1.5K 2012

NucSoft 1.5K 2012

Blackhole–hosting (incl. crypter, payload, and

source code)

200 weekly or 500 monthly 2013

Whitehole 200–1.8K rent 2013

Blackhole–license license 700 quarterly or 1.5K annually 2013

Cool (incl. crypter and payload) 10K monthly 2013

Gpack, Mmpack, Icepack, Eleonore 1K–2K 2013

Sweet orange 450 weekly or 1.8K monthly 2013

Furthermore, Table 7.5 provides documented sales from 2013 to 2016. As it is depicted among the buyers

are Governmental agencies and hacking teams [81]. It is important to highlight that the information disclosed

in the table might refer to transactions that took place in both regulated and unregulated markets.

Table 7.5: Zero–day sales [81]

Buyer Seller Price (USD) Date

US LEA Exodus intelligence N/A Nov. 2016

FBI Unknown 1.3M Apr. 2016

Zerodium Unknown 1M Nov. 2015

Hacking team Netragard 105K June 2015

Hacking team Eugene Ching (cyber researcher for Singaporean army) 20K Apr. 2015

Hacking team Netragard 215K Nov. 2014

Hacking team Netragard 80.5K July 2014

Hacking team Vitaliy Toropov 40K Feb. 2014

Hacking team Vitaliy Toropov 45K Oct. 2013

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 110

It is evident from the above information that critical zero–day vulnerabilities and exploits are very expensive

to buy, as a unique set of technical skills is required for their identification. Thus, only elite attackers would

be able to identify vulnerabilities and create exploits, while only attackers with enough money would be able

to obtain critical vulnerabilities/exploits (e.g. state–sponsored attackers).

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 111

8. Cyber–Trust related scenarios

In the previous sections we have analyzed attackers' profiles, tools available for protecting networks from

attacks as well as graphical security models to be utilized in an intelligent intrusion response system. In this

section we focus on attacks applicable on Smart Homes and Mobile Devices as these are the main pillars of

the project’s pilots. Hence, the need to better understand common threats in these domains arises, along

with the available tools for setting up a realistic simulation environment in order to test our research ideas

and the performance of the prototype methods before being validated in the pilot.

8.1 Typical CT domain models

Smart homes and mobile devices are the domains where Cyber–Trust will be validated based on deliverable

D2.3. To this end, this section explores the devices that networks of these domains typically include in order

to get a better understanding on how a realistic simulation environment can be setup.

8.1.1 Smart home domain

The components that need to be chosen in this domain include end–user devices, their operating systems

(OS), routers, services, versions, etc. [69]. In addition, there is a number of factors that should be considered

for setting up the smart home network within IoT [71]; these are the network type (wired, wireless or both),

the number of devices within the smart home, how these devices are connected to the IoT network [14].

Regarding the devices, the smart home’s router is the first device that to be considered [8]; these routers,

which are provided by ISPs with a built–in access point, must have high performance (number of packets per

second) and be easy to manage [29]. Examples that could be used in the simulation environment include:

▪ Unifi USG: designed to be compatible with UniFi Enterprise Systems to provide routing and security

to a home network100. It has three Gigabit Ethernet ports and the ability to route up to 1M packets

per second. The device supports features, like Advanced Firewall, QoS, VLAN support and VPN.

▪ Netgear N900: has VPN support, which is compatible with Time Machine, and features USB storage

access. Therefore, it is possible to access a connected USB hard drive from the network (or e.g. a

smart TV)101.

▪ Google Wifi system: aims to provide enhanced WiFi coverage by setting up multiple WiFi devices in

a smart home. The router offers 802.11ac connectivity with 2.4GHz, 5GHz channels, 2x2 antennas,

with support for beamforming. It also has two gigabit Ethernet ports, and contains a quad–core

processor with 512 MB RAM and 4 GB flash memory102.

Switches are typically part of the smart home network by connecting devices in a wired manner; they receive,

process, and forward data to the destination [137]. The number of ports in a switch depends on the smart

home’s size and the number of devices to be connected (a port is devoted to the router [110]); common

network devices that could be connected via switches are given below

▪ Access points (per floor)

▪ Network attached storage (NAS) drives / external hard drives

▪ Smart TV

▪ Game console

▪ Smart thermostat (some connect over a WiFi connection, whereas others need a bridge)

▪ Personal computer / other office peripherals

100 https://www.ubnt.com/unifi/unifi–ap/
101 https://www.netgear.com/
102 https://store.google.com/product/google_wifi

https://www.ubnt.com/unifi/unifi-ap/
https://www.netgear.com/
https://store.google.com/product/google_wifi

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 112

A number of switches are being considered for Cyber–Trust’s simulation environment, like Unifi US–8–60W

and Netgear ProSafe series. The above are next illustrated in the indicative setup of Figure 8.1.

Figure 8.1. A smart home’s typical network setup

The combination between wired and wireless smart home networks in the context of Cyber–Trust provides

a number of advantages, including the ability of modeling more complex environments using a multitude of

protocols. Wired networks provide better connectivity than wireless networks, since the distance from the

access point leads to performance degradation, and are less vulnerable to security issues. On the other hand,

wireless networks offer a big advantage when it comes to mobility [73].

8.1.2 Mobile device domain

Cellular networks have developed to process and deal with a huge amount of data. They can also be used to

connect physical things together like sensors, smartphones [15]. Communication across a cellular network is

enabled by the transceivers and is packet–based; A mobile device could contain many transceivers, thereby

having the capability to communicate over different radio networks (GPRS, Bluetooth, GSM, UMTS, LTE, Wi–
Fi, etc.). For example, a cellular phone can include a GPRS transceiver for communicating with a cellular base

station, a Wi–Fi transceiver for communicating with a Wi–Fi network, and a GPS transceiver for receiving a

signal from a positioning satellite. A network typically includes a variety of elements that host logic for the

tasks on the network. In modern packet–based networks, servers be scattered at various logical points on

the network [117]. Servers might also be in communication with databases and can enable communication

devices to access the contents of a database. A server can span several network elements, including other

servers in the cellular network. The devices that can be connected to the cellular network are varied based

on their company such as:

▪ Apple iPhone: it runs iOS and connectivity options include Wi–Fi, GPS, Bluetooth, NFC, Infrared, FM,

3G and 4G.

▪ Samsung, LG, Sony, and HTC: they run Android OS and connectivity options are as above. Moreover,

the HTC device includes a number of sensors, such as a compass/magnetometer, proximity sensor,

accelerometer, ambient light sensor and a gyroscope.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 113

The above different devices can be connected in a machine to machine (M2M) fashion, which is typically the

case in large networks of heterogonous devices that serve time–critical applications [77]; the goal is to keep

these devices secure and safe from sophisticated attackers.

8.2 Typical attackers’ strategies

Following Section 8.1, where we focused on the devices that a smart home and a mobile network can contain,

we next explore the typical strategies that attackers might apply in these domains.

8.2.1 Smart home domain

Since the late 1970s, several studies have been devoted towards shaping the idea of a smart home [57]. This

was facilitated by the advancements in the consumer electronics industry and the increase of the internet

connectivity [88]. Living in a smart home environment provides a lot of advantages, ranging from economic

profits to the improvement of smart home owners’ daily lives.

Figure 8.2. Typical Attacker’s Strategies on Smart Home [116]

Security is a critical factor in this area [143]. Currently, numerous security issues have been reported, with

about 80% of smart home devices being vulnerable to a wide range of attacks [28]. Obviously, connecting

smart devices, e.g. smart door locks and fridges, led to several cyber security hazards; even connected child

monitors are vulnerable to cyber-attacks [17]. The influence of each attack differs to a great extent due to a

number of factors, like the ecosystem, the device and environment, and the available protection level, and

attackers could disclose users’ confidentiality or privacy [119]. Attackers’ typical strategies on smart homes

are depicted in Figure 8.2.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 114

8.2.2 Common cyber–security threats and attacks against smart home devices

8.2.2.1 Botnets

A botnet is a network of systems aiming at remotely taking control and distributing malware [38]. The botnet

operator takes the control through command and control servers (C&C Server). Criminals may use them for

stealing private information, exploiting online–banking data, performing DDos–attacks or sending spam and

phishing emails [115]. With the recent growth of the IoT, many objects and devices are in threat or part of

the so–called thingbots (a botnet that combines independent connected objects). Botnets along with

thingbots consist of various different connected devices, including computers, laptops, smartphones, tablets,

and other smart devices, and are hard to identify [79]. These things have two key features in common, they

are internet enabled and they are able to transfer data automatically through a network [82]. Generally, the

aim of a botnet is to flood a target system with a vast number of requests in order to exceed its capacity in

serving these requests, thus resulting into a denial of service to legitimate users.

8.2.2.2 Man–In–the–middle

The idea of man–in–the–middle attacks is that the attacker intercepts and breaches the communications

between two systems [144], which are confident that are communicating directly with each other. As the

attacker controls the main communication, the receiver is misleaded into thinking that received messages

are legitimate [38]. Within this area, many cases have now been conveyed by smart home owners, including

cases of hacked vehicles and hacked smart refrigerators [36]. Because of the nature of the devices being

hacked, these attacks can be quite harmful on a smart home’s devices. These devices can be anything from

industrial tools, machinery, or vehicles to harmless connected ones like smart TV's or garage door openers

[67]. Generating fake temperature data, using an environmental monitoring device, and sending these data

to the cloud is an example of attack. Likewise, a hacker may deactivate vulnerable HVAC systems throughout

a heat wave, producing a disastrous situation for service providers with affected models.

8.2.2.3 Data and identity theft

This kind of data is created using insecure devices such as wearables and smart appliances providing cyber

attackers with a huge amount of targeted information that can be subjugated for fraudulent transactions and

identify theft [136]. Even though the news is full of frightening and unpredictable hackers accessing data and

money with all kinds of remarkable hacks, the users themselves are mostly the main enemy to their security

[130]. Devices connected over the internet, such as iPad, Kindle, smartwatch and locks, whose protection has

been neglected present very easy targets to thieves and opportunistic finders [132]. They key to achieve a

theft is to collect many data with patience so that they can be used against the owner of the hacked device

[82]. The hacker usually combines many resources in order get outstanding idea of the personal identity of

the smart device user, including the general data available over the internet, social media information, data

from smart watches, fitness trackers, smart meters, smart fridges and many possible means [18]. In general,

the more information can be discovered about a device owner, the easier and the more advanced a targeted

hack aimed at identity theft can be [2].

8.2.2.4 Social engineering

Social engineering refers to the way an attacker uses to manipulate the users so as to provide confidential

and private information [37]. The criminals are looking for many types of information of the targeted victim,

but the attacker typically deceives the users into sending passwords or bank information [40]. Alternatively,

the criminals might try to access a computer and install software that will provide them access to personal

and private information, on top of giving them full control over the user’s computer [28]. The key method

that usually used in the social engineering hacks is the phishing emails. Through these emails, the hacker tries

to guide the users to divulge their information, or redirect them to websites like banking or shopping sites

that look legitimate, enticing the users to enter their details [143].

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 115

8.2.2.5 Denial of service attack

A denial–of–service (DoS) attack tries to make a machine or network resource temporarily inaccessible to its

intended users or persistently damaging services of a host connected to the Internet [21]. There are many

reasons for unavailability; however, it typically refers to infrastructure that cannot cope because of capacity

overload [67]. In a distributed denial of service (DDoS) attack, a vast number of malicious systems gather to

attack one target [115]. Usually this attack is achieved using a botnet, where several devices are set up to

simultaneously request for a service [79]. Therefore, in the DDoS case, incoming traffic that floods a target

originates from multiple sources, thus making it very hard to stop the cyber–attack by merely blocking a

single source. Actually, because of the lack of security in smart home devices, the studies showed that the

percentage of the DDoS attacks have doubled from 3% to 6% in 2016 [79]. This duplication is not astonishing,

particularly in the case of one compromised smart sensor on a network is able to infect many similar devices

running the same software. Therefore, these infected devices are forced to join huge botnet armies that

implement crippling DDoS attacks [82].

8.2.2.6 Device hijacking

The attacker hijacks and effectively undertakes the control of a device [57]. This kind of attacks are difficult

to discover, since the basic functionality of the device is not changed by the attacker. Furthermore, it is very

likely to infect all the smart devices in the home through merely taking one device of them. For instance, a

hacker who initially compromises a thermostat is able to theoretically get control over the entire network of

the smart home and consequently can remotely unlock a door or change the keypad PIN code to limit entry.

8.2.3 Mobile device domain

Security threats in mobile devices are growing. In 2017, Kaspersky Lab reported that they detected more

than 5M malicious installation packages, and more than 500K mobile ransomware Trojans [147]. This shows

that attackers have an increasing interest in using today’s mobile devices for spreading mobile malware that

steals user’s information, bombards our devices with unwanted ads, and can even be used to launch other

types of attacks such as denial of service attacks. The rest of the section highlights common mobile threats

and attackers’ strategies on modern mobile devices and other handheld devices.

8.2.4 Common cyber security threats and attacks against mobile devices

8.2.4.1 Zero–day vulnerabilities

A zero–day vulnerability is defined as a software vulnerability whose existence was unknown (thus, no patch

or fix has been released) and it is discovered during the process of a security incident’s post–analysis [34]. A

zero–day vulnerability is one of the most challenging attack vectors to detect, as the attacker might develop

an exploit to compromise a mobile device that still vulnerable and unpatched. Attackers develop software

exploits to take advantage of security vulnerabilities. Such malicious software can compromise a vulnerable

mobile device and enable the attacker to control the device entirely. In most cases, a patch from the software

developer can fix this. However, when a mobile device becomes infected, exploit malware can steal its data,

allowing hackers to take unauthorised control of the device [142]. Figure 8.3 shows the typical life of a zero–
day vulnerability starting from an attacker discovering the vulnerability and developing an exploit to take

advantage of this unpatched/unknown venerability.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 116

Figure 8.3. Life–span of a typical zero–day vulnerability [141]

This is followed by the application of the actual attack on the victim’s vulnerable device unless the provider
of the vulnerable device/software releases a patch fix.

8.2.4.2 Malware and spyware

A malware is a malicious piece of software developed specifically for stealing information, harm an electronic

device or to propagate itself and control devices it infected.

Mobile devices can be infected by mobile malware and spyware in various attack vectors; these include

installing legitimate applications that were modified with malicious payloads, getting drive–by downloads,

etc. The infected software will perform at least one of the following techniques, namely privilege escalation,

remote control, financial control, and intelligence gathering, which provide an attacker with a variety of

options to utilise a compromised mobile device [111]. It is possible to know if a desktop computer is infected

with malware, as there are symptoms that sometimes are noticeable such as slowing down the performance

of the computer, starting popping–up fake ads, and sometimes the computer crashes unexpectedly, the fan

starts whirring noisily and unfamiliar icons show up in the desktop [113]. However, it is more challenging to

know whether a mobile device such as Android or iOS phones is infected with malware. According to Porta,

the following are the common forms of recent mobile malware [113]:

▪ Adware – shows frequent ads to a user in the form of pop–ups, sometimes leading to the unintended

redirection of users to web pages or applications

▪ Banker malware – attempts to steal users’ bank credentials without their knowledge

▪ Ransomware – demands money from users and, in exchange, promises to release either the files or

the functionality of the devices being ‘held hostage’
▪ Rooting malware – ‘roots’ the device, essentially unlocking the operating system and obtaining

escalated privileges

▪ SMS malware – manipulates devices to send and intercept text messages resulting in SMS charges.

The user is usually not aware of the activity

▪ Spyware – monitors and records information about users’ actions on their devices without their
knowledge or permission

▪ Trojan – hides itself within a piece of seemingly innocent, legitimate software.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 117

8.2.4.3 Botnets

One of the most devastating type of malware that infects mobile devices is botnets. A botnet infecting

machines worldwide, receives commands from their bot–master that has full control over the infected device

and launches illegal actions such as DDoS, credential stealing, spam sending, bank account and credit card

theft and downloading other malware [139].

8.2.4.4 Keylogger

Keyloggers and screenloggers are applications that can capture, store and send active device screens, without

the attention of device’s owner. Currently available keyloggers are considered genuine applications and they

are used to do many legitimate and legal functions, such as tracking children’s use of the internet; however,

many cases of inappropriate use in business environments have been reported [131]. Typical keyloggers

search for specific events or unique keys to identify sensitive and confidential information that is next sent

to the adversary. For instance, when a mobile user enters a username or an email address, the spyware can

recognize such activity as filling a login form, in which keying in a password will follow. Looking for a special

event or a particular key is much easier than trying to infer each entered key. This approach can be used in

taps inference by looking (i.e., in the stream of sensor data) for a specific symbol(s) (e.g., @ key, possibly

followed by Next button to indicate a subsequent e–mail password) or for an interesting event, such as a

system start–up, launching of a password–protected session/app, or even the start of a phone conversation

where valuable information, such as PIN, social security number, and date of birth may be requested [46].

8.2.4.5 Wireless attack

Hackers can attack wireless network users to intercept transmitted Wi–Fi traffic between mobile devices and

wireless access points, and even alter the intercepted traffic to inject malware into websites being read by

the mobile device user. Security analysts discovered many security vulnerabilities on mobile devices that take

advantage of wireless implementations, where Android and Linux–based devices are affected the most by

multiple vulnerabilities [70, 125, 135]. Further, standard Wi–Fi networks security measures such as using

WPA or WPA encryption, have known weaknesses that affect the operating system, incl. macOS, Windows,

iOS, Android, and Linux devices rendering them vulnerable. Intercepting traffic allows attackers to read

information that was previously assumed to be safely encrypted, and hackers do not need even to crack a

Wi–Fi password to achieve this. The vulnerability requires that a device be in range to a malicious attacker,

and it can be used to steal credit card numbers, passwords, chat messages, photos, emails, and lots of other

online communications [151].

8.3 Simulation environment

The provision of a simulation platform is via Docker coupled to VMWare virtualization in order to yield a

scalable, controllable IoT simulator capable of meeting the requirements of Cyber–Trust. A simulator is

designed to have a resemblance to the actual network, but only simulate functions within the network, such

as normal device operating behavior and traffic versus attack scenarios (DDoS, malware executables, etc.).

Towards deciding the most technically sound approach to delivering a simulation capability, three market–
leading, manufacturer agnostic capabilities were examined: two of which only function as network simulators

whereas a third one serves as a containerization capability that can be exploited as a network simulator. The

capabilities assessed are GNS3, Mininet and Docker. The first two are GUI–driven and Docker is focusing on

CLI functionality (with some third–party OS–specific GUI capabilities available). The overall analysis is

summarized in Table 8.1, and discussed in–depth in the sequel.

Mininet is designed to research and teach networking, including software–defined networks (SDN). It creates

a flat ethernet network of multiple OpenFlow–enabled Ethernet switches and multiple hosts connected to

these switches. Custom topologies are driven by user–generated Python scripts that provide the user with a

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 118

great deal of flexibility in terms of network topology, but most importantly with the ability to transition to a

real–world system.

Figure 8.4. Mininet GUI

GNS3 is a GUI–driven network simulator that allows the user to run multiple emulated systems centered on

the Cisco Internetwork Operating System (IOS), which is a commercial–license–driven Cisco provision. It is

very powerful, allowing the emulation of Cisco IOSs on Windows or Linux based computers. Emulation is

possible for a long list of router platforms and PIX firewalls. Using an EtherSwitch card in a router, switching

platforms may also be emulated to the degree of the card’s supported functionality. The reliance though on

commercial licensing to deliver core functionality makes it rather unsuitable for the project’s needs.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 119

Figure 8.5. GNS3 GUI

Docker diverges from the pure simulation capabilities discussed above, as it provides a system capability

rather than a simple piece of software. Docker is an extension of the Linux containerization protocols within

the Linux kernel. Individual capabilities such as software, hardware OS and general operating systems are

‘containerized’ to allow the user to build containerized applications that deliver portability, service discovery,

load balancing, security, performance and scalability. The core architecture is shown in Figure 8.6.

Figure 8.6. Docker architecture

Within these paradigms, the container networking model, which is shown in Figure 8.7, delivers the docker

networking architecture interfaces that enable these paradigms to be delivered. The network model

constructs are what allow Docker to be considered in the case of this deliverable as a suitable replacement

for dedicated network simulation software, because whilst most computer–based components can be

containerized and hosted on docker, the network model is the core element that allows these containers to

function as a network.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 120

Figure 8.7. Container networking model

The network sandbox contains the configuration of a container's network stack. This includes management

of the container's interfaces, routing table, and DNS settings. A sandbox may contain many endpoints from

multiple networks and an endpoint joins a sandbox to a network. The network model does not specify a

network in terms of the OSI model. An implementation of a network could be a linux bridge, a VLAN, etc. A

network is a collection of endpoints that have connectivity between them. Two interfaces are provided:

network drivers (native and remote) and IPAM drivers.

A vast array of containerized hardware and software exists on the open–source Docker Hub, and if specific

capabilities are required the user can always containerize a specific capability themselves. Thus, Docker

provides a scalable, adaptable, open–source networking capability free from the usability restrictions faced

by users of specific software such as Mininet or GNS3.

In summary, as shown in Table 8.1, the three capabilities assessed all had their strengths, and Docker seems

to be the best solution for the development of Cyber–Trust’s simulator.

Table 8.1. High–level comparison of simulation environments

Capability Mininet GNS3 Docker

Open Source Yes Yes Yes

Windows Support Yes Yes Yes

UNIX/Linux Support Yes Yes Yes

Simulation mode No Yes No

Emulation mode Yes Yes Yes

Compatible with real–
world controllers

Yes No Yes

Scalable Yes (but complex) No Yes

Traffic Flow Yes No Yes

Malware injection DDoS only No Yes

Hardware agnostic Yes Partly Yes

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 121

The requirement for a simulation platform is driven by the user needs to simulate the scenarios defined in

deliverable D2.3. At this stage, we focus on the provision of a simulation capability that covers the first use

case domain of D2.3.

Smart Home Domain (SHD). The definition of the Smart Home for the purpose of the simulation is a gateway,

with an associated Intrusion Protection System, behind which a set of heterogeneous devices exist that cover

the current market in terms of mobile devices and connected ‘white goods’ (thermostats, DVR, webcam,

etc.). This simulation can be effectively summarized as covering the TCP/IP–focused network capabilities

associated with IoT, including network protocols such as UDP, TCP and HTTP and underpinned by both legacy

IPv4 and the IoT–enabling IPv6 protocols.

The SHD is, for the purposes of simulation, not a home per–se, but rather a connected set of capabilities

against which the following actions can be conducted:

▪ Normal traffic injection (scapy);

▪ DDoS injection: High–Orbit Ion Cannon (http) and Low Orbit Ion Cannon (tcp/udp);

▪ Malware injection (DB of malware executables).

This is achieved by means of virtualization, where the increased resource consumption demanded by

virtualized environments is offset by the protection offered by virtual machines (VM) when conducting

research into malware through isolation from the host hardware. It also allows a level of flexibility as to the

virtualized capabilities included in the simulation (i.e. different IDPSs can be run to compare performance in

differing scenarios). A traffic generator VM (Scapy), DDoS VM (LOIC & HOIC) and a malware DB VM will

connect to an IDPS VM (Snort/Suricata) which will, in turn, connect to the Smart Home VM. The Smart Home

VM will run a networked set of containers, with a container running the device under review, i.e. a smart

meter.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 122

9. Conclusions

This deliverable reviewed the various methodologies and tools that can be used to efficiently model possible

attack strategies. A systematic approach to achieve this goal is related with modelling these strategies with

the so–called graphical security models (e.g. attack trees/attack graphs), which allow for convenient

representation of the possible steps that an attacker may follow towards his final goal, in conjunction with

the privileges obtained at each step (or with the actual impacts that occur with respect to security). These

models are based on appropriate information that needs to be acquired at the first place, such as information

on network topology, on nodes/devices connectivity, as well as on vulnerabilities that exist; by these means,

attack strategies are being systematically analyzed so as to be able to take proper decisions with regard to

the mitigation measures that need to be implemented. Moreover, such an analysis is strongly related to a

risk management on the overall system, by appropriately utilizing the probabilities of occurrence of the

identified vulnerabilities in conjunction with their impact upon successful exploitation.

This report presented a detailed comparative study, in terms of well–defined criteria, of all the relevant tools

and methodologies, whilst typical realistic scenarios within the framework of Cyber–Trust project are also

given. The main outcomes of this report can be summarized as follows:

▪ Utilizing attack graphs seems to be the most suitable modelling strategy (although adopting a hybrid

model consisting of both tree–based and graph–based models could be convenient in some cases).

▪ Probabilistic attack graphs (e.g. Bayesian attack graphs) provide also the means for performing risk

analysis via systematically considering the attack probabilities (based on the relevant CVSS scores).

Therefore, they will be considered in the framework of the Cyber–Trust project.

▪ The attack graph to be used needs to have certain properties so as to interact with the intelligent

intrusion response system (iIRS). Moreover, to cope with scalability issues, it is highly probable that

hypergraphs need to be employed – e.g. associating each node of a graph with a cluster.

▪ Nmap and the Angry IP Scanner (both being open source) are the tools that will be used for acquiring

information on the list of devices lying within Cyber–Trust’s protection domain, as well as on network

topology, ports detection, host reachability, security measures deployed (packets filtering, firewalls

etc.) and versions detection. Such info will in turn feed the attack graph model.

▪ Whenever needed, the capabilities of the above tools may be complemented by other tools, such as

NetworkMiner.

▪ The Nmap will also be used in the context of Cyber–Trust for detecting vulnerabilities and backdoors.

Moreover, to this goal, the freely available OpenVAS tool will be also used, which also integrates well

with the Nmap. Again, the information obtained from these tools will in turn feed the attack graph

model.

▪ In case that a reconnaissance tool is needed in the context of processing information for feeding the

attack model, then the open source ReconDog seems to be a right option, whilst the Spiderfoot – up

to the extent that its license limitations allow – will be also considered.

▪ Risk assessment in the context of Cyber–Trust will be built upon dynamic approaches that allow to

exploit measurable information available from security standards so as to automatically update risk

models; such models also rely on attack graphs.

▪ Snort or Suricata will be used, possibly in combination with other tools, like Bastille, that complement

their functionalities in order to enforce the mitigation actions at the host or network level.

▪ Attackers have different skill levels as well as different amount of budget to spent. Each attacker has

been correlated with the CVSS metrics as well as with the different zero–day markets.

▪ The simulation environment will be a mixture of dockers and virtual machines on a VMWare Vsphere

infrastructure, simulating smart home devices. The network connectivity of these devices will be

provided through Mininet or GNS3 (if Cisco routers and switches need to be simulated).

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 123

References

[1] Ablon, L., Libicki, M.C. and Golay, A.A., 2014. Markets for cybercrime tools and stolen data: Hackers'

bazaar. Rand Corporation.

[2] M. A. N. Abrishamchi, A. H. Abdullah, A. D. Cheok, K. S. Bielawski, K. “Side channel attacks on smart
home systems: A short overview”, in Proceedings IECON 2017 – 43rd Annual Conference of the IEEE

Industrial Electronics Society, 2017–January, pp. 8144–8149, 2017.

[3] F.–X. Aguessy, O. Bettan, G. Blanc, V. Conan, and H. Deba, “Bayesian Attack Model for Dynamic Risk
Assessment,” arXiv:1606.09042 [cs.CR] 2016.

[4] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayoglu, E. I. Tatli, “Automated Generation of Attack

Graphs Using NVD”, 8th ACM Conference on Data and Application Security and Privacy (CODASPY),

pp. 135–142, 2018.

[5] M. Albanese, S. Jajodia, A. Pugliese, V. Subrahmanian, “Scalable analysis of attack scenarios,” in: V.
Atluri, C. Diaz (Eds.), European Symposium on Research in Computer Security – ESORICS 2011, pp.

416–433, 2011.

[6] A.M. Algarni and Y.K. Malaiya. Software Vulnerability Markets: Discoverers and Buyers.

International Journal of Computer, Information Science and Engineering Vol: 8, No: 3, 2014.

[7] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, graph–based network vulnerability analysis,” in
Proc. of the 9th ACM Conference on Computer and Communications Security (CCS 2002), ACM, 2002,

pp. 217–224, 2002.

[8] N. Apthorpe, D. Reisman, N. Feamster, “A smart home is no castle: Privacy vulnerabilities of
encrypted IoT traffic”, arXiv preprint arXiv:1705.06805, 2017.

[9] J. Armin and M. Cremonini. “0–Day Vulnerabilities and Cybercrime,” In Proc. 10th International

Conference on Availability, Reliability and Security, pp. 711 – 718, 2015.

[10] M. Artz, “NetSPA : A network security planning architecture”, Massachusetts Institute of
Technology, 2002.

[11] D. Baca, K. Petersen, “Prioritizing countermeasures through the countermeasure method for

software security (CM–Sec),” in: M.A. Babar, M. Vierimaa, M. Oivo (Eds.), Product–Focused

Software Process Improvement, in: Lecture Notes in Computer Science, Springer Berlin Heidelberg,

pp. 176–190, 2010.

[12] G. Barlett, J. Heidemann, C. Papadopoulos, “Understanding Passive and Active Service Discovery”,
in Proc. of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC ’07), New York, NY,

USA, pp. 57–70, ACM, 2007.

[13] M. Barrèrre, E. C. Lupu, “Naggen: A Network Attack Graph GENeration Tool”, IEEE CNS 17, pp. 378–
379, 2017.

[14] D. Basu, G. Moretti, G. S. Gupta, S. Marsland, “Wireless sensor network based smart home: Sensor
selection, deployment and monitoring”, In Sensors Applications Symposium (SAS), IEEE, pp. 49–54,

2013.

[15] A. Birenboim, N. Shoval, “Mobility research in the age of the smartphone”, Annals of the American

Association of Geographers, vol. 106, no. 2, pp. 283–291, 2016.

[16] S. Bistarelli, F. Fioravanti, P. Peretti, “Defense trees for economic evaluation of security

investments,” in Proc. of the First International Conference on Availability, Reliability and Security

(ARES 2006), 2006, pp. 337–350.

[17] A. Brauchli, D. Li, “A solution based analysis of attack vectors on smart home systems”, 2015

https://dblp.org/pers/hd/a/Aksu:M=_Ugur
https://dblp.org/pers/hd/d/Dilek:M=_Hadi
https://dblp.org/pers/hd/o/Ozbayoglu:A=_Murat
https://dblp.org/pers/hd/t/Tatli:Emin_Islam

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 124

International Conference on Cyber Security of Smart Cities, Industrial Control System and

Communications, SSIC 2015 – Proceedings, pp. 1–6, 2015.

[18] M. L. R Chandra, B. V. Kumar, B. Sureshbabu, “IoT enabled home with smart security”, 2017

International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS

2017, pp. 1193–1197, 2018.

[19] K. Coffey, R. Smith, L. Maglaras, H. Janicke, “Vulnerability Analysis of Network Scanning on SCADA
Systems”, Security and Communication Networks, Hindawi, 2018.

[20] Computer Security Institute, “2010/2011 Computer Crime and Security Survey”, pp. 1–40, 2011.

Available at: https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf

[21] L. Coppolino, V. Dalessandro, S. Dantonio, L. Levy, L. Romano, “My smart home is under attack”, in
Proceedings of 18th IEEE International Conference on Computational Science and Engineering (CSE

2015), pp. 145–151, 2015.

[22] Council of Europe, “Cyberterrorism: The Use of the Internet for Terrorist Purposes”, United Nations
Office on Drugs and Crime, 12(1), p. 497, 2007.

[23] CVE Details, “Current CVSS Score Distribution For All Vulnerabilities”, Available at:

https://www.cvedetails.com/cvss–score–distribution.php , [Accessed: 17 December 2018]

[24] Cyber–Trust D2.2, “Threat and Risk Assessment Methodology,” page 40, 2018.

[25] M. Dhawan, R. Poddar, K. Mahajan, V. Mann, “Sphinx: Detecting security attacks in software–
defined networks,” in: Proc. of the Network and Distributed System Security Symposium (NDSS

2015), pp. 1–15, 2015.

[26] K. Edge, “A Framework for Analyzing and Mitigating the Vulnerabilities of Complex Systems Via

Attack and Protection Trees,” Ph.D. Thesis, Air Force Institute of Technology, Wright Patterson AFB,
OH, USA, AAI3305523, 2007.

[27] ENISA, “Good Practice Guide for Incident Management,” ENISA, pp. 1–110, 2010.

[28] E. Fernandes, A. Rahmati, J. Jung, A. Prakash, “Security Implications of Permission Models in Smart–
Home Application Frameworks”, IEEE Security and Privacy, vol. 15, no. 2, pp. 24–30, 2017.

[29] D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai–Fovino, G. Steri, G. Baldini, “Security and privacy issues
for an IoT based smart home” In 40th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO 2017), pp. 1292–1297, 2017.

[30] N. Ghosh, I. Chokshi, M. Sarkar, S. K. Ghosh, A. K. Kaushik, S. K. Das, “NetSecuritas: An Integrated

Attack Graph–based Security Assessment Tool for Enterprise Networks”, in Proc. of the 2015

International Conference on Distributed Computing and Networking (ICDCN ‘15), New York, NY,

USA, p. 30, ACM, 2015.

[31] G. Gonzalez–Granadillo, et al. “RORI–based countermeasure selection using the OrBAC formalism,”

International Journal of Information Security, vol. 13, no. 1, pp 63–79, Feb. 2014.

[32] G. Gonzalez–Granadillo, et al. “Selecting optimal countermeasures for attacks against critical

systems using the attack volume model and the RORI index,” Computers & Electrical Engineering,

vol. 47, pp. 13–34, Oct. 2015.

[33] G. Gonzalez–Granadillo, E. Doynikova, I. Kotenko, and J. Garcia–Alfaro, “Attack Graph–Based

Countermeasure Selection Using a Stateful Return on Investment Metric,” 10th Int’l Symposium on
Foundations and Practice of Security – FPS 2017, LNCS 10723, pp. 293–302, 2018.

[34] D. Gritzalis, “Zero–Day Vulnerabilities: A Primer”, 2017. Available at: https://infosec.aueb.gr/

Publications/ICT Security 2017 Zero–Day website.pdf (Accessed: 12 December 2018).

[35] E. Griffith, 2017. “7 Huge Bug Bounty Payouts.” PCMag, June 9. https://www.pcmag.com/feature/

https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf
https://www.cvedetails.com/cvss-score-distribution.php
https://infosec.aueb.gr/Publications/ICT%20Security%202017%20Zero-Day%20website.pdf
https://infosec.aueb.gr/Publications/ICT%20Security%202017%20Zero-Day%20website.pdf
https://www.pcmag.com/feature/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 125

354224/7–huge–bug–bounty–payouts.

[36] P. Gupta, J. Chhabra, “IoT based Smart Home design using power and security management”, 2016

1st International Conference on Innovation and Challenges in Cyber Security (ICICCS), pp. 6–10,

2016.

[37] V. Ha, A. Peculea, “Secure and Extensible Smart Home Template”, in 17th RoEduNet Conference:

Networking in Education and Research (RoEduNet), pp. 1–6, 2018.

[38] O. Hachinyan, A. Khorina, S. Zapechnikov, “A Game–Theoretic Technique for Securing IoT Devices

against Mirai Botnet”, 2018 IEEE Conference of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus), pp. 1500–1503, 2018.

[39] HackerOne, “The 2018 Hacker Report” Available at https://www.hackerone.com/sites/default/

files/2018–01/2018_Hacker_Report.pdf

[40] J. H. Han, Y. Jeon, J. Kim, “Security considerations for secure and trustworthy smart home system
in the IoT environment”, International Conference on ICT Convergence 2015: Innovations Toward

the IoT, 5G, and Smart Media Era (ICTC), pp. 1116–1118, 2015.

[41] M. S. Haque, T. Atkison, “An Evolutionary Approach of Attack Graph to Attack Tree Conversion,”
International Journal of Computer Network and Information Security, vol. 9, no. 11, pp. 1, 2017.

[42] J. Hong, D. Kim, “HARMs: Hierarchical attack representation models for network security analysis,”
in Proc. of the 10th Australian Information Security Management Conference on SECAU Security

Congress (SECAU 2012), pp. 74–81, 2012.

[43] J. Hong, and D. Kim, “Performance Analysis of Scalable Attack Representation Models”, in Security

and Privacy Protection in Information Processing Systems, Springer, Berlin, Heidelberg, pp. 330–
343, 2013.

[44] J. Hong, D. Kim, “Towards scalable security analysis using multi–layered security models,” J. Netw.

Comput. Appl., vol. 75, pp. 156–168, 2016.

[45] J. B. Hong, D. S. Kim, C. J. Chung, D. Huang, “A survey on the usability and practical applications of
graphical security models,” Computer Science Review, vol. 26, pp. 1–16, 2017.

[46] M. Hussain, A. Al–Haiqi, A. A. Zaidan, B. B. Zaidan, M. L. M. Kiah, N. B. Anuar, M. Abdulnabi, “The
rise of keyloggers on smartphones: A survey and insight into motion–based tap inference attacks”,
Pervasive and Mobile Computing, vol. 25, pp. 1–25, 2016.

[47] K. Ingols, M. Chu, R. Lippmann, S. Webster, S. Boyer, “Modeling modern network attacks and
countermeasures using attack graphs”, in Proc. of the 2009 Annual Computer Security Applications

Conference, vol. 50, no. 1, pp. 117–126, 2009.

[48] K. Ingols, R. Lippmann, K. Piwowarski, “Practical attack graph generation for network defense,” in
Proc. of the 22nd Annual Computer Security Applications Conference (ACSAC 2006), IEEE, pp. 121–
130, 2006.

[49] ISO/IEC, “Risk management – Risk assessment techniques,” ISO/IEC 31010, 2009.

[50] ISO/IEC, “Information technology – Security techniques – Information security management

systems – Requirements,” ISO/IEC 27001 2nd ed., 2013.

[51] ISO/IEC, “Information technology – Security techniques – Information security risk management,”
ISO/IEC 27005 2nd ed., 2018.

[52] ISO/IEC, “Risk management – Guidelines,” ISO/IEC 31000 2nd ed., 2018.

[53] S. Jajodia, S. Noel, “Topological Vulnerability Analysis”, in Advances in Information Security Series,

vol. 46, Cyber situational awareness, pp. 133–154, Springer, 2010.

https://www.pcmag.com/feature/
https://www.hackerone.com/sites/default/files/2018-01/2018_Hacker_Report.pdf
https://www.hackerone.com/sites/default/files/2018-01/2018_Hacker_Report.pdf

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 126

[54] S. Jajodia, S. Noel, P. Kalapa, “Cauldron: Mission–centric cyber situational awareness with defense

in depth”, in Proc. Of the Military Communications Conference (MILCOM), Baltimore, MD, USA, pp.

1339–1344, 2011.

[55] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of Network Attack Vulnerability,” in Managing

Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A. Lazarevic (eds.),

Kluwer Academic Publisher, 2003

[56] S. Jajodia, S. Noel, B. O’Berry, “Topological analysis of network attack vulnerability,” in: V. Kumar,
J. Srivastava, A. Lazarevic (Eds.), Managing Cyber Threats, in: Massive Computing, Vol. 5, Springer

US, pp. 247–266, 2005.

[57] A. C. Jose, R. Malekian, “Improving Smart Home Security: Integrating Logical Sensing into Smart

Home”, IEEE Sensors Journal, vol. 17, no, 13, pp. 4269–4286, 2017.

[58] A. Joshi, R. Lal, T. Finin, A. Joshi, “Extracting Cybersecurity Related Linked Data from Text”, IEEE 7th

International Conference on Semantic Computing, Irvine, CA, pp. 252–259, IEEE, 2013.

[59] K. Kaynar, “A taxonomy for attack graph generation and usage in network security”, Journal of

Information Security and applications, vol. 29, pp. 27–56, 2016.

[60] K. Kaynar, F. Sivrikaya, “Distributed attack graph generation”, IEEE Trans. on Dependable and Secure

Computing, vol. 13, no. 5, pp. 519–532, 2016.

[61] S. Khaitan, S. Raheja, “Finding optimal attack path using attack graphs: A survey,” Int. J. Soft

Comput. Eng., vol. 1, no. 3, pp. 2231–2307, 2011.

[62] S. Khan, S. Parkinson, “Review into State of the Art of Vulnerability Assessment using Artificial
Intelligence”, in: S. Parkinson, A. Crampton, R. Hill (Eds.), Guide to Vulnerability Analysis for

Computer Networks and Systems, Springer, Cham, 2018.

[63] B. Kordy, S. Mauw, S. Radomirović, P. Schweitzer, “Foundations of attack– defense trees,” in P.
Degano, S. Etalle, J. Guttman (Eds.), Formal Aspects of Security and Trust, Lecture Notes in

Computer Science, Vol. 6561, Springer, pp. 80–95, 2011.

[64] B. Kordy, L. Piètre–Cambacédès, P. Schweitzer, “DAG–based attack and defense modeling: Don’t
miss the forest for the attack trees,” Computer science review, vol. 13, pp. 1–38, 2014.

[65] R. Kumar, M. Stoelinga, “Quantitative security and safety analysis with attack fault trees,” in Proc.

of the 18th IEEE International Symposium on High, Assurance Systems Engineering (HASE 2017), pp.

25–32, 2017.

[66] H. S. Lallie, K. Debattista, J. Bal, “An Empirical Evaluation of the Effectiveness of Attack Graphs and

Fault Trees in Cyber–Attack Perception,” IEEE Transactions on Information Forensics and Security,

vol. 13, no. 5, pp. 1110–1122, 2018.

[67] C. Lee, L. Zappaterra, K. Choi, H. A. Choi, “Securing smart home: Technologies, security challenges,
and security requirements”, 2014 IEEE Conference on Communications and Network Security, CNS

2014, pp. 67–72, 2014.

[68] E. LeMay, M. Ford, K. Keefe, W. Sanders, C. Muehrcke, “Model–based security metrics using

adversary view security evaluation (advise)”, in 8th International Conference on Quantitative

Evaluation of Systems (QEST), pp. 191–200, 2011.

[69] B. Li, and J. Yu, “Research and application on the smart home based on component technologies
and Internet of Things”, Procedia Engineering, vol. 15, pp. 2087–2092, 2011.

[70] X. Lu, S.–H. S. Huang, “Malicious Apps May Explore a Smartphone’s Vulnerability to Detect One’s
Activities”, in 2017 IEEE 31st International Conference on Advanced Information Networking and

Applications (AINA), pp. 787–794, 2017.

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 127

[71] S. Man, H. X. Yang, Y. Peng, X. S. Wang, “Design of embedded wireless smart home gateway based
on ARM 9”, Jisuanji Yingyong/ Journal of Computer Applications, vol. 30, no. 9, pp. 2541–2544,

2010.

[72] E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K. Keefe, W. Sanders, “Adversary–driven state–
based system security evaluation,” in: Proc. of the 6th International Workshop on Security

Measurements and Metrics (MetriSec 2010), ACM, New York, NY, USA, pp. 5:1–5:9, 2010.

[73] C. Liang, F. R. Yu, “Wireless network virtualization: A survey, some research issues and challenges”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 358–380, 2015.

[74] R. Lippmann, K. Ingols, “An annotated review of past papers on attack graphs,” Technical report,
MIT Lincoln Lab, 2005.

[75] Y. Liu, H. Man, “Network vulnerability assessment using Bayesian networks,” in: B.V. Dasarathy
(Ed.), Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005,

Society of Photo–Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5812, pp. 61–
71, 2005.

[76] D. Lopez, O. Pastor, L.J. Garcia Villalba, “Dynamic Risk Assessment in Information Systems : State–
of the–art,” 6th Int’l Conference on Information Technology – ICIT 2013, pp. 1–9, 2013.

[77] D. López–Pérez, H. Claussen, L. Ho, “The sector offset configuration concept and its applicability to
heterogeneous cellular networks”, IEEE Communications Magazine, vol. 53, no. 3, pp. 190–198,

2015.

[78] C. D. Martin, “White Hat, Black Hat: The Ethics of Cybersecurity: Taking the High Road”, ACM

Inroads, vol. 8, no. 1, pp. 33–35, 2017.

[79] C. D. Mcdermott, F. Majdani, A. V. Petrovski, “Botnet Detection in the Internet of Things using Deep
Learning Approaches”, 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8,

2018.

[80] M. McQueen, W. Boyer, M. Flynn, G. Beitel, “Quantitative Cyber Risk Reduction Estimation
Methodology for a Small SCADA control system,” in Proc. of the 39th Annual Hawaii International

Conference on System Science (HICSS 2006), Vol. 9, 2006.

[81] J. Meakins (2018): A zero–sum game: the zero–day market in 2018, Journal of Cyber Policy, DOI:

10.1080/23738871.2018.1546883

[82] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, Y. Elovici, “N–BaIoT–
Network–based detection of IoT botnet attacks using deep autoencoders”, IEEE Pervasive

Computing, vol. 17, no. 3, pp. 12–22, 2018.

[83] P.H. Meland, et al., “Security and Trustworthiness Threats to Composite Services: Taxonomy,

Countermeasures, and Research Directions,” Secure and Trustworthy Service Composition, LNCS,

vol. 8900 pp. 10–35, 2014.

[84] S. K. Meredith, B. B. Hilliard, M. B. Kosseifi, U.S. Patent No. 9,158,890. Washington, DC: U.S. Patent

and Trademark Office, 2015.

[85] E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal Defense Policies for Partially Observable
Spreading Processes on Bayesian Attack Graphs,” in Proc. 2nd ACM Workshop on Moving Target

Defense – MTD 2015, pp. 67–76, Oct. 2015.

[86] E. Miehling, M. Rasouli, and D. Teneketzis, “A POMDP Approach to the Dynamic Defense of Large–
Scale Cyber Networks,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 10,

Oct. 2018.

[87] T. Mouroutis, A. Lioumpas, “D2.1: Use–cases definition and threat analysis”, RERUM FP7 project,

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 128

2014.

[88] M. Mrinal, L. Priyanka, M. Saniya, K. Poonam, A. B. Gavali, “Smart home – Automation and security

system based on sensing mechanism”, Proceedings of the 2017 2nd IEEE International Conference

on Electrical, Computer and Communication Technologies, ICECCT 2017, pp. 1–3, 2017.

[89] J. Muniz, G. McIntyre, and N. AlFardan, Security Operations Center: Building, Operating, and

Maintaining your SOC, Cisco Press, Oct. 2015.

[90] L. Munoz–Gonzalez, E. C. Lupu, “Bayesian Attack Graphs for Security Risk Assessment”, IST–153

Workshop on Cyber Resilience, 2017 (available in: http://ceur–ws.org/Vol–2040/paper7.pdf).

[91] L. Munoz–Gonzalez, D. Sgandurra, M. Barrere, and E.C. Lupu, “Exact Inference Techniques for the
Analysis of Bayesian Attack Graphs,” IEEE Transactions on Dependable and Secure Computing, Early

Access, 2017.

[92] J. Nilsson, “Vulnerability Scanners”, Master Thesis, Dept. of Computer and Systems Sciences, Royal

Institute of Technology, 2006.

[93] NIST, “Guide for Conducting Risk Assessments,” SP 800–30, NIST, 2002.

[94] NIST, “Technical Guide to Information Security Testing and Assessment (SP 800–115)”, NIST, 2008.

[95] NIST, “Guide for Applying the Risk Management Framework to Federal Information Systems: A
Security Life Cycle Approach,” SP 800–37 Revision 1, NIST 2010.

[96] NIST, “Managing Information Security Risk: Organization, Mission, and Information System View,”
SP 800–39, NIST, 2011.

[97] NIST, “Security Risk Analysis of Enterprise Networks Using Probabilistic Attack Graphs,” Inter–
agency Report 7788, NIST, 2011.

[98] NIST, “Guide for Conducting Risk Assessments,” SP 800–30 Revision 1, NIST, 2012.

[99] NIST, “Specification for the Extensible Configuration Checklist Description Format (XCCDF) Version
1.2,” Interagency Report 7275 Revision 4, NIST, 2012.

[100] NIST, “Security and Privacy Controls for Federal Information Systems and Organizations (SP 800–
53, Revision 4)”, NIST, 2013.

[101] S. Noel, D. Bodeau, R. McQuaid, “Big–Data Graph Knowledge Bases for Cyber Resilience”, 2017.

[102] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, K. Prole, “Advances in topological vulnerability

analysis,” in Proc. of Cybersecurity Applications Technology Conference for Homeland Security

(CATCH 2009), pp. 124–129, 2009.

[103] S. Noel, E. Harley, K. Tam, M. Limiero, M. Share, “CyGraph: Graph–based Analytics and Visualization

for Cybersecurity”, Handbook of Statistics, Elsevier, vol. 35, pp. 117–167, 2016.

[104] S. Noel, M. Jacobs, P. Kalapa, S. Jajodia, “Multiple coordinated views for network attack graphs,” in
Proc. of IEEE Workshop on Visualization for Computer Security (VizSEC 2005), pp. 99–106, 2005.

[105] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient minimum–cost network hardening via exploit

dependency graphs,” in Proc. of the 19th Annual Computer Security Applications Conference (ACSAC

2003), IEEE, 2003, pp. 86–95.

[106] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient minimum–cost network hardening via exploit

dependency graphs,” in Proc. of the 19th Annual Computer Security Applications Conference (ACSAC

2003), IEEE, pp. 86–95, 2003.

[107] S. Noel, S. Jajodia, “Managing attack graph complexity through visual hierarchical aggregation,” in
Proc. of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security (VizSEC

2004), ACM, New York, NY, USA, pp. 109–118, 2004.

http://ceur-ws.org/Vol-2040/paper7.pdf

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 129

[108] X. Ou, W. Boyer, M. McQueen, “A scalable approach to attack graph generation,” in Proc. of the

13th ACM Conference on Computer and Communications Security (CCS 2006), ACM, pp. 336–345,

2006.

[109] X. Ou, S. Govindanajhala, A. Appel, “Mulval: A logic–based network security analyzer”, in Proc. of

the 14th USENIX Security Symposium, pp. 113–128, 2005

[110] V. Pandey, R. Saha, U.S. Patent No. 9,426,095. Washington, DC: U.S. Patent and Trademark Office,

2016.

[111] N. Penning, M. Hoffman, J. Nikolai, Y. Wang, “Mobile malware security challenges and cloud–based

detection”, in 2014 International Conference on Collaboration Technologies and Systems (CTS),

IEEE, pp. 181–188, 2014.

[112] C. Phillips, L. Swiler, “A graph–based system for network–vulnerability analysis,” in Proc. of the

Workshop on New Security Paradigms (NSPW 1998), ACM, New York, NY, USA, pp. 71–79, 1998.

[113] L. A. Porta, “4 Ways hackers are infecting Phones with Viruses”. Available at: https://www.wand

era.com/malware–on–android/ (Accessed: 13 December 2018).

[114] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using Bayesian Attack
Graphs,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1, pp. 61–74, Jan/Feb.

2012.

[115] A. O. Prokofiev, Y. S. Smirnova, V. A. Surov, “A Method to Detect Internet of Things Botnets”, 2018

IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),

pp. 105–108, 2018.

[116] Rambus, “Smart Home: Threats and Countermeasures”, 2018. Available at https://www.rambus.

com/iot/smart–home/

[117] J. A. Räsänen, U.S. Patent No. 9,084,233. Washington, DC: U.S. Patent and Trademark Office, 2015.

[118] N. Rasmussen, “Cyber Security, Terrorism, and Beyond: Addressing Evolving Threats to the
Homeland”, Hearing before the Senate Committee on Homeland Security and Governmental
Affairs, pp. 1–4, 2014. Available at: https://www.dni.gov/files/NCTC/documents/news_docume

nts/cyber_security_terrorism_and_beyond.pdf

[119] S. U. Rehman, V. Gruhn, “An approach to secure smart homes in cyber–physical systems/Internet–
of–Things”, 2018 5th International Conference on Software Defined Systems, SDS 2018, pp. 126–
129, 2018.

[120] R. J. Robles, T. H. Kim, “Applications, systems and methods in smart home technology: A Review”,
Int. Journal of Advanced Science And Technology, vol. 15, 2010 .

[121] R. Ritchey, B. O’’Berry, S. Noel, “Representing TCP/IP connectivity for topological analysis of
network security”, in Proc. of 18th Annual Computer Security Applications Conference (ACSAC 2002),

pp. 25–31, 2002.

[122] M. K. Rogers, “The psyche of cybercriminals: A psycho–Social perspective”, in Cybercrimes: A

multidisciplinary analysis, Springer, pp. 217–235, 2011.

[123] S. Roschke, F. Cheng, R. Schuppenies, C. Meinel, “Towards Unifying Vulnerability Information for
Attack Graph Construction”, in: P. Samarati, M. Yung, F. Martinelli, C.A. Ardagna (Eds.), Information

Security (ISC 2009), Lecture Notes in Computer Science, vol 5735. Springer, Berlin, Heidelberg,

2009.

[124] A. Roy, D. Kim, K. Trivedi, “Cyber security analysis using attack countermeasure trees,” In Proc. of

the Sixth Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW 2010),

ACM, New York, NY, USA, 2010, pp. 28:1–28:4, 2010.

https://www.wandera.com/malware-on-android/
https://www.wandera.com/malware-on-android/
https://www.rambus.com/iot/smart-home/
https://www.rambus.com/iot/smart-home/
https://www.dni.gov/files/NCTC/documents/news_documents/cyber_security_terrorism_and_beyond.pdf
https://www.dni.gov/files/NCTC/documents/news_documents/cyber_security_terrorism_and_beyond.pdf

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 130

[125] A. Roy, N. Memon, A. Ross, “MasterPrint: Exploring the Vulnerability of Partial Fingerprint–Based

Authentication Systems”, IEEE Transactions on Information Forensics and Security, vol. 12, no. 9,

pp. 2013–2025, 2017.

[126] R. Sabillon, J. Cano, V. Cavaller, J. Serra, “Cybercrime and Cybercriminals: A Comprehensive Study,”

International Journal of Computer Networks and Communications Security, vol. 4, no. 6, pp. 165–
176, 2016. Available at: http://www.ijcncs.org/published/volume4/issue6/p1_4–6.pdf.

[127] SAINT Deliverable 3.5 Analysis of Legal and Illegal Vulnerability Markets and Specification of the

Data Acquisition Mechanisms

[128] C. Salter, O. S. Saydjari, B. Schneier, J. Wallner, “Toward a secure system engineering
methodology,” in Proc. of the 1998 Workshop on New Security Paradigms (NSPW ’98).
Charlottesville, Virginia, United States, pp. 2–10, Sep. 1998.

[129] SANS Institute, “Incident Handler's Handbook,” SANS Institute – InfoSec Reading Room, pp. 1–19,

2011.

[130] U. Saxena, J. S. Sodhi, Y. Singh, “Analysis of security attacks in a smart home networks”, Proceedings

of the 7th International Conference Confluence 2017 on Cloud Computing, Data Science and

Engineering, pp. 431–436, 2017.

[131] H. Sbai, M. Goldsmith, S. Meftali, J. Happa, “A Survey of Keylogger and Screenlogger Attacks in the
Banking Sector and Countermeasures to Them”, in Proc. of 10th International Symposium CSS, pp.

29–31, 2018.

[132] M. Schiefer, “Smart Home Definition and Security Threats”, Proceedings – 9th International

Conference on IT Security Incident Management and IT Forensics, IMF 2015, pp. 114–118, 2015.

[133] B. Schneier, Secrets and lies: Digital security in a networked world, John Wiley and Sons Inc., 2000.

[134] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24., no.12, pp. 21–29, 1999.

[135] Y. Seralathan, T. T. Oh, S. Jadhav, J. Myers, J. P. Jeong, Y. H. Kim, J. N. Kim, “IoT security vulnerability:
A case study of a Web camera”, in 2018 20th International Conference on Advanced Communication

Technology (ICACT), IEEE, pp. 172–177, 2018.

[136] M. Shariqsuhail, G. Viswanathareddy, G. Rambabu, C. V. R. Dharmasavarni, V. K. Mittal, “Multi–
functional secured smart home”, in 2016 International Conference on Advances in Computing,

Communications and Informatics (ICACCI 2016), pp. 2629–2634, 2016.

[137] S. U. N. Shengtao, U.S. Patent No. 9,178,795. Washington, DC: U.S. Patent and Trademark Office,

2015.

[138] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing, “Automated generation and analysis of attack

graphs,” in Proc. of IEEE Symposium on Security and Privacy (S&P 2002), IEEE, pp. 273–284, 2002.

[139] S. Soltani, S. A. H. Seno, M. Nezhadkamali, R. Budiarto, “A Survey On Real World Botnets And
Detection Mechanisms”, International Journal of Information and Network Security, vol. 3, no. 2,

pp. 116–127, 2014.

[140] T. Sorell, “Human Rights and Hacktivism: The Cases of Wikileaks and Anonymous,”, Journal of

Human Rights Practice, Oxford University Press, vol. 7, no. 3, pp. 391–410, 2015.

[141] V. Sundar, “3 Ways to Prevent Zero–Day Attacks”. Available at: https://www.indusface.com/blog/

prevent–zero–day–attacks/ (Accessed: 13 December 2018).

[142] Symantec, “Zero–day vulnerability: What it is, and how it works”. Available at:
https://us.norton.com/internetsecurity–emerging–threats–how–do–zero–day–vulnerabilities–
work–30sectech.html (Accessed: 13 December 2018).

[143] S. Tanwar, P. Patel, K. Patel, S. Tyagi, N. Kumar, M. S. Obaidat, “An advanced Internet of Thing based

http://www.ijcncs.org/published/volume4/issue6/p1_4-6.pdf
https://www.indusface.com/blog/prevent-zero-day-attacks/
https://www.indusface.com/blog/prevent-zero-day-attacks/

 D2.5 Threat actors’ attack strategies

Copyright Cyber–Trust Consortium. All rights reserved. 131

Security Alert System for Smart Home”. IEEE CITS 2017 – 2017 International Conference on

Computer, Information and Telecommunication Systems, pp. 25–29, 2017.

[144] M. Thomas, “Survey in Smart Grid and Smart Home Security: Issues, Challenges and

Countermeasures”, Health Estate, vol. 56, no. 8, pp. 24–25, 2002.

[145] N. Tippenhauer, W. Temple, A. Hoa Vu, B. Chen, D. Nicol, Z. Kalbarczyk, W. Sanders, “Automatic
generation of security argument graphs,” in: Proc. of the 20th IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC 2014), pp. 33–42, 2014.

[146] K. Tsipenyuk, B. Chess, G. McGraw, “Seven pernicious kingdoms: a taxonomy of software security
errors”, in IEEE Security & Privacy, vol. 3, no. 6, pp. 81–84, Nov.–Dec. 2005.

[147] R. Unuchek, “Mobile malware evolution 2017”, 2018. Available at: https://securelist.com/mobile–
malware–review–2017/84139/ (Accessed: 12 December 2018).

[148] M. Urbanska, M. Roberts, I. Ray, A. Howe, and Z. Byrne, “Accepting the inevitable: Factoring the

user into home computer security,” in Proc. 3rd ACM Conference on Data and Application Security

and Privacy, San Antonio, TX, USA, Feb. 2013.

[149] D. Waltermire and B. Cheikes, “Forming Common Platform Enumeration (CPE) Names from

Software Identification (SWID) Tags”, NISTIR 8085 (Draft), National Institute of Standards and
Technology, Gaithersburg, Maryland, 2015.

[150] D. Waltermire, C. Schmidt, K. Scarfone and N. Ziring, “Specification for the Extensible Configuration
Checklist Description Format (XCCDF) Version 1.2”, NIST Interagency Report 7275 Revision 4,
https://csrc.nist.gov/CSRC/media/Publications/nistir/7275/rev–4/final/documents/nistir–7275r4_

updated–march–2012_clean.pdf

[151] T. Warren, “41 percent of Android phones are vulnerable to ‘devastating’ Wi–Fi attack”, 2017.
Available at: https://www.theverge.com/2017/10/16/16481252/wi–fi–hack–attack–android–
wpa–2–details (Accessed: 14 December 2018).

[152] S. Weerawardhana, S. Mukherjee, I. Ray, A. Howe, “Automated Extraction of Vulnerability
Information for Home Computer Security”, in: F. Cuppens, J. Garcia–Alfaro, N. Zincir Heywood, P.

Fong (Eds.), Foundations and Practice of Security (FPS 2014). Lecture Notes in Computer Science,

vol 8930, Springer, Cham, 2015.

[153] J. D. Weiss, “A system security engineering process,” in Proc. of the 14th Annual NCSC/NIST National

Computer Security Conference, pp. 572–581, 1991.

[154] L. Williams, R. Lippmann, K. Ingols, “GARNET: A graphical attack graph and reachability network
evaluation tool”, in: J. Goodall, G. Conti, K.–L. Ma (Eds.), Visualization for Computer Security,

Lecture Notes in Computer Science, vol. 5210, Springer, Berlin, Heidelberg, pp. 44–59, 2008.

[155] A. Xie, Z. Cai, C. Tang, J. Hu, Z. Chen, “Evaluating network security with two layer attack graphs,” in
Proc. of Annual Computer Security Applications Conference (ACSAC 2009), pp. 127–136, 2009.

[156] R. Yager, “OWA trees and their role in security modeling using attack trees,” Information Sciences,

vol. 176, no. 20, pp. 2933–2959, 2006.

[157] R. Zhuang, S. Zhang, S. DeLoach, X. Ou, A. Singhal, “Simulation–based approaches to studying

effectiveness of moving–target network defense,” in: Proc. of National Symposium on Moving

Target Research (MTD 2012), pp. 1–12, 2012.

[158] S. Zonouz, H. Khurana, W. Sanders, T. Yardley, “RRE: A game–theoretic intrusion response and

recovery engine,” in Proc. of IEEE/IFIP International Conference on Dependable Systems Networks

(DSN 2009), pp. 439–448, 2009.

https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
https://csrc.nist.gov/CSRC/media/Publications/nistir/7275/rev-4/final/documents/nistir-7275r4_updated-march-2012_clean.pdf
https://csrc.nist.gov/CSRC/media/Publications/nistir/7275/rev-4/final/documents/nistir-7275r4_updated-march-2012_clean.pdf
https://www.theverge.com/2017/10/16/16481252/wi-fi-hack-attack-android-wpa-2-details
https://www.theverge.com/2017/10/16/16481252/wi-fi-hack-attack-android-wpa-2-details

