
 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 1 

 

D6.1 State-of-the-art on profiling, 

detection and mitigation 

 
Advanced Cyber-Threat Intelligence, Detection, and Mitigation 

Platform for a Trusted Internet of Things 

Grant Agreement: 786698 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

 

 

 

  

Work Package 6: Title of Work package 
 

Document Dissemination Level  

P 

CΟ 

Document Due Date: 28/02/2019 

Document Submission Date: 05/03/2019 

Public 

Confidential, only for members of the Consortium (including the Commission Services) 

☒ 

☐ 

Co-funded by the Horizon 2020 Framework Programme of the European Union 

Ref. Ares(2019)1478463 - 05/03/2019



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 2 

 

Document Information 

Deliverable number: D6.1 

Deliverable title: State-of-the-art on profiling, detection and mitigation 

Deliverable version: 1.0 

Work Package number: WP6 

Work Package title: State-of-the-Art on profiling, detection and mitigation (M10) 

Due Date of delivery:  28/02/2019 

Actual date of delivery: 28/02/2019 

Dissemination level: PU 

Editor(s):  Stavros Shiaeles (CSCAN) 

Contributor(s):  Stavros Shiaeles, Keltoum Bendiab, Julian Ludlow, Salam Ketab, 

Muhammad Ali, Abdulrahman Alruban (CSCAN) 

Liza Charalambous, George Boulougaris, Michael Skitsas 

(ADITESS) 

Dimitrios Kavallieros, Vasiliki-Georgia Bilali, George Kokkinis 

(KEMEA) 

Nicholas Kolokotronis, Costas Vassilakis, Spiros Skiadopoulos, 

Christos Tryfonopoulos, Konstantinos Limniotis, Christos-Minas 

Mathas, Sotirios Brotsis (UOP) 

Reviewer(s): Dimitris Kavalieros (KEMEA) 

Gohar Sargsyan (CGI) 

Project name: Advanced Cyber-Threat Intelligence, Detection, and Mitigation 

Platform for a Trusted Internet of Things 

Project Acronym Cyber-Trust 

Project starting date: 1/5/2018 

Project duration:  36 months 

Rights: Cyber-Trust Consortium 

 

 

Version History 

Version Date Beneficiary Description 

0.05  22/12/2018  CSCAN  Tentative ToC proposed  

0.10  28/12/2018  CSCAN  Deliverable’s ToC 

finalised  

0.20 15/02/2019 CSCAN Sections added 

0.30 20/02/2019 ADITESS Sections added 

0.40 21/02/2019 UOP Sections added 

0.50 22/02/2019 KEMEA Sections Added 

0.60 23/02/2019 CSCAN Formatting of the 

document and send to 

review 

0.70 27/02/2019 CSCAN Review received and 

applying changes 

1.00 05/03/2019 CSCAN Final Submission 

 

  



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 3 

 

Acronyms 

ACRONYM EXPLANATION 

ACL Access Control List 

AES Advanced Encryption Standard 

API Application Programming Interface 

ARP Address Resolution Protocol 

ASCII American Standard Code for Information Interchange 

AV Antivirus 

BGP Border Gateway Protocol 

BLE Bluetooth Low Energy 

BS Base Stations 

BSN Base Station Network 

C&C Command and Control 

CAM Content Addressable Memory 

CII Critical Information Infrustructure 

CoAP Constrained Application Protocol 

COM Communication Port 

CPU Central Processing Unit 

CSP Communication Service Provider 

DDoS Distributed Denial of Service 

DHCP Dynamic Host Configuration Protocol 

DM Data Mining 

DNS Domain Name System 

DOS Denial of Service 

DPI Deep Packet Inspection 

EC-GSM-IoT Extended Coverage-GSM-IoT 

ED End Device 

EGP Exterior Gateway Protocol 

eMTC enhanced Machine Type Communication 

ETL Extract Transform Load 

FHE Fully Homomorphic Encryption 

FTP File Transfer Protocol  

FWSM Firewall Services Module 

GDPR General Data Protection Regulation 

GHZ Gigahertz 

GSM Global System for Mobile communications 

HTML Hypertext Markup Language 

HTTP HyperText Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

ICMP Internet Control Message Protocol 

IDS Intrusion Detection System  

IETF Internet Engineering Task Force 

IGMP Internet Group Management Protocol 

IGS Integration Gateway Services 

IoT Internet of Things 

IP Internet Protocol 

IPS Intrusion Prevention System 

IPsec Internet Protocol Security 

IPv6 Internet Protocol version 6 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 4 

 

IRC Internet Relay Chat 

ISM Industrial, Scientific, and Medical Radio Band 

ISP Internet Service Provider 

ITS Intelligent Transportation System 

JPG / JPEG Joint Photographic Experts Group 

KNN K-nearest neighbour 

Li-Fi Light Fidelity 

LoRa Long Range PHY and WAN 

LPWA Low Power Wide Area 

LPWAN Low Power Wide Area Network 

LTE Long-Term Evolution 

LTE-MTC LTE-Machine Type Communication 

M2M Machine to Machine 

MAC Media Access Control 

MCU Microcontroller Unit 

MDM Mobile Device Management 

MDMP Mobile Device Managers Plus 

MDU Multi-dwelling Units 

MS Microsoft 

NAT Network Address Translation 

NB-IoT Narrow-Band IoT 

NIC Network Driver Interface 

NIDS Network intrusion detection system 

OS Operational System 

P2P Peer-to-peer 

PCAP Packet Capture 

PMIC Power Management Integrated Circuit 

PPDM Privacy Preserving Data Mining 

PPT Polynomial Probabilistic Time 

PS Profiling Service 

QID Quater in die 

RAM Random-access memory 

RF Radio Frequency 

RFC Request for Comments 

RFIC Radio Frequency Integrated Circuit  

RIP Routing Information Protocol 

RSA Rivest, Shamir, and Adelman cryptosystem 

RTOS Real-Time Operating System 

SAVE Static Analyser for Vicious Executables 

SDA Smart Device Agents 

SDK Software Development Kit 

SDN Software-Defined Networking 

SGA Smart Gateway Agents 

SLAAC Stateless Address Auto Configuration 

SMB Server Message Block 

SMC Secure Multiparty Computation 

SMTP Simple Mail Transfer Protocol 

SNMP Simple Network Management Protocol 

SOM Self-Organizing Maps 

SSH Secure Shell 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 5 

 

SSL Secure Sockets Layer 

SSO Single Sign-On 

STUN Session Traversal Utilities NAT 

TCP Transmission Control Protocol 

TV Television 

UDP User Datagram Protocol 

UI User Interface 

UNB Ultra Narrow Band 

USB Universal Serial Bus 

VM Virtual Machine 

VPN Virtual Private Network 

Wi-Fi Wireless Fidelity 

ZK Zero-Knowledge 

 

  



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 6 

 

Table of Contents 

Executive Summary .............................................................................................................................. 11 

1. Introduction ................................................................................................................................. 12 

1.1 Purpose of the document ................................................................................................................ 12 

1.2 Relations with other activities in the project .................................................................................. 12 

1.3 Structure of the document .............................................................................................................. 12 

2. IoT Devices profiling methods ....................................................................................................... 14 

2.1 Introduction ..................................................................................................................................... 14 

2.2 Device Profiling ................................................................................................................................ 14 

2.3 SDA with Cloud Services .................................................................................................................. 18 

2.4 SDA operating on Linux-based distribution ..................................................................................... 19 

2.5 SDA App ........................................................................................................................................... 20 

2.6 Services ............................................................................................................................................ 21 

2.6.1 Computer Services ..................................................................................................................... 21 

2.6.2 Router Services .......................................................................................................................... 22 

2.6.3 Camera Services ......................................................................................................................... 22 

2.6.4 Smartphone Services & Tablet Services .................................................................................... 22 

2.6.5 Gateway Services ....................................................................................................................... 23 

2.6.6 Categories Services .................................................................................................................... 23 

2.7 IoT Connections ............................................................................................................................... 24 

2.7.1 Short-range wireless .................................................................................................................. 24 

2.7.1.1 Bluetooth mesh networking and Bluetooth low energy ................................................... 24 

2.7.1.2 ZigBee ................................................................................................................................ 24 

2.7.1.3 Z-wave ............................................................................................................................... 24 

2.7.1.4 Wireless (Wi-Fi) ................................................................................................................. 25 

2.7.1.5 IPv6 Low-power wireless Personal Area Network (6LowPAN) ......................................... 25 

2.7.1.6 Thread ............................................................................................................................... 25 

2.7.1.7 Light Fidelity (Li-Fi) ............................................................................................................ 25 

2.7.2 Cellular Technologies ................................................................................................................. 25 

2.7.2.1 Extended Coverage-GSM-IoT (EC-GSM-IoT) ..................................................................... 25 

2.7.2.2 Narrow-Band IoT (NB-IoT) ................................................................................................. 26 

2.7.2.3 LTE-Machine Type Communication (LTE-MTC) and enhanced Machine Type 

Communication (eMTC)....................................................................................................................... 26 

2.7.3 Long range Wireless Technologies ............................................................................................ 26 

2.7.3.1 LoRa (LoRa PHY and LoRaWAN) ........................................................................................ 26 

2.7.3.2 Sigfox ................................................................................................................................. 26 

2.7.3.3 Weightless ......................................................................................................................... 27 

2.8 Log files ............................................................................................................................................ 27 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 7 

 

2.9 Network profiling ............................................................................................................................. 30 

2.9.1 Network Fundamentals ............................................................................................................. 31 

2.9.2 Profiling the Network................................................................................................................. 32 

2.9.3 Passive Network Protocol Capture and Analysis ....................................................................... 34 

2.9.4 Protocols .................................................................................................................................... 35 

2.9.4.1 Internet Protocol (IP) ........................................................................................................ 36 

2.9.4.2 Address Resolution Protocol (ARP) ................................................................................... 36 

2.9.4.3 Internet Control Message Protocol (ICMP) ....................................................................... 37 

2.9.5 Ports ........................................................................................................................................... 37 

2.9.6 Volume Traffic & Muddy Filtering ............................................................................................. 38 

3. State of the art in malware detection and mitigation ..................................................................... 42 

3.1 Introduction ..................................................................................................................................... 42 

3.2 Malware ........................................................................................................................................... 42 

3.3 Classification of Malware ................................................................................................................ 43 

3.3.1 Viruses ....................................................................................................................................... 43 

3.3.2 Worms ....................................................................................................................................... 44 

3.3.3 Trojans ....................................................................................................................................... 44 

3.3.4 Bots ............................................................................................................................................ 45 

3.3.5 Ransomware .............................................................................................................................. 45 

3.3.6 Backdoors .................................................................................................................................. 46 

3.3.7 Spyware and Adware ................................................................................................................. 46 

3.3.8 Rootkits ...................................................................................................................................... 46 

3.4 Malware Analysis Techniques ......................................................................................................... 46 

3.4.1 Basic Static Analysis ................................................................................................................... 47 

3.4.2 Advance Static Analysis.............................................................................................................. 47 

3.4.3 Basic dynamic analysis ............................................................................................................... 48 

3.4.4 Advanced Dynamic Analysis ...................................................................................................... 49 

3.5 Signature-Based Techniques ........................................................................................................... 49 

3.5.1 Snort........................................................................................................................................... 50 

3.5.1.1 Pcap ................................................................................................................................... 51 

3.5.1.2 Decode and Pre-processing .............................................................................................. 51 

3.5.1.3 Detection engine ............................................................................................................... 51 

3.5.2 Suricata ...................................................................................................................................... 52 

3.5.2.1 Development and features ............................................................................................... 52 

3.5.2.2 IDS/IPS ............................................................................................................................... 53 

3.6 Behaviour Based Techniques ........................................................................................................... 53 

3.6.1 Bro IDS ....................................................................................................................................... 53 

3.6.1.1 Components of Bro IDS ..................................................................................................... 54 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 8 

 

3.6.1.2 Machine learning concepts and definitions ...................................................................... 54 

3.7 Evasion of Malware and Anti-Evasion Approaches ......................................................................... 56 

3.7.1 An overview of Evasion Approaches and Malware Camouflage Evolution ............................... 56 

3.7.1.1 Encryption ......................................................................................................................... 57 

3.7.1.2 Oligomorphism .................................................................................................................. 57 

3.7.1.3 Polymorphism ................................................................................................................... 58 

3.7.1.4 Metamorphism ................................................................................................................. 58 

3.8 Anti-Evasion Approaches ................................................................................................................. 59 

3.8.1 Malware Deobfuscation ............................................................................................................ 59 

3.8.2 Unpacking .................................................................................................................................. 59 

3.8.3 Binary rewriting and editing ...................................................................................................... 60 

3.8.4 Malware binary reconstruction ................................................................................................. 60 

3.8.4.1 Malware Unpacking .......................................................................................................... 60 

3.8.4.2 Malware Normalization .................................................................................................... 60 

4. The quest for privacy in the IoT ..................................................................................................... 62 

4.1 Introduction to IoT and its Applications .......................................................................................... 62 

4.1.1 Smart Homes ............................................................................................................................. 62 

4.1.2 Healthcare .................................................................................................................................. 62 

4.1.3 Supply Management .................................................................................................................. 62 

4.2 The need for Privacy-preserving data mining ................................................................................. 63 

4.2.1 User Privacy ............................................................................................................................... 65 

4.2.2 Privacy Issue in Data Mining ...................................................................................................... 66 

4.2.3 Confidentiality Issues in Data Mining ........................................................................................ 66 

4.2.4 Semi-Honest Adversaries ........................................................................................................... 66 

4.3 Heuristic-Based Techniques and tools ............................................................................................ 66 

4.3.1 Data Perturbation ...................................................................................................................... 68 

4.3.2 Cryptographic Technique ........................................................................................................... 68 

4.3.3 Blocking based technique .......................................................................................................... 68 

4.3.4 Condensation Approach ............................................................................................................ 68 

4.3.5 Hybrid technique ....................................................................................................................... 69 

4.3.6 Data Anonymization .................................................................................................................. 69 

4.4 Cryptography-Based Techniques and tools ..................................................................................... 69 

4.4.1 Secure Multiparty Computation ................................................................................................ 70 

4.4.2 Security in the multiparty computation .................................................................................... 70 

4.4.2.1 Adversarial power. ............................................................................................................ 70 

4.4.2.2 Feasibility of secure multiparty computation. .................................................................. 71 

4.4.3 Homomorphic Encryption Techniques ...................................................................................... 71 

4.4.3.1 Homomorphic Encryption ................................................................................................. 72 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 9 

 

4.4.3.2 Somewhat Homomorphic Encryption ............................................................................... 72 

4.4.3.3 Fully Homomorphic Encryption ........................................................................................ 72 

4.4.3.4 Limitations and Generations ............................................................................................. 73 

4.4.4 Zero-knowledge proofs .............................................................................................................. 73 

4.5 Reconstruction-Based Techniques and tools .................................................................................. 74 

5. Conclusion .................................................................................................................................... 78 

6. References ................................................................................................................................... 80 

 

 

 

 

  



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 10 

 

List of Figures 

Figure 2.2: SDA Monitoring through Cloud Networks ..................................................................................... 18 

Figure 2.3: SDA Hybrid Monitoring through Cloud Networks ......................................................................... 19 

Figure 2.4: SDA operating on Linux Based Device ........................................................................................... 19 

Figure 2.5: Hybrid Mobile app development .................................................................................................. 20 

Figure 2.6: The IoT Network Environment [10] ............................................................................................... 31 

Figure 2.7: The TCP/IP Protocol Suite [174] .................................................................................................... 32 

Figure 2.8: Example of SiLK Workflow [85] ..................................................................................................... 34 

Figure 2.9. Sensor Functionality [85] ............................................................................................................... 35 

Figure 2.10: High-Level Cyber-Trust Network Monitoring Approach.............................................................. 35 

Figure 2.11: IPv4 and IPv6 Differences ............................................................................................................ 36 

Figure 2.12: The ARP Packet Structure ............................................................................................................ 37 

Figure 2.13: Common TCP/UDP Ports [63] ...................................................................................................... 38 

Figure 2.14: An example Smart Home and its network edge [18] .................................................................. 39 

Figure 2.15: The Cyber-Trust MUD environment ............................................................................................ 39 

Figure 2.16: Results of MUD analysis on IoT devices [65] ............................................................................... 40 

Figure 3.1: Malware trend (Source: [112]) ...................................................................................................... 43 

Figure 3.2: Ways that a virus can add itself to the host code ......................................................................... 44 

Figure 3.3: Malware Analysis Method ............................................................................................................. 47 

Figure 3.4: Example of sandbox architecture .................................................................................................. 49 

Figure 3.5: Image containing Signature of Worm ........................................................................................... 50 

Figure 3.6: signature-based system ................................................................................................................. 50 

Figure 3.7: Snort Engine [82] ........................................................................................................................... 51 

Figure 3.8: Suricata architecture [83] .............................................................................................................. 52 

Figure 3.9: Malware Detection Techniques..................................................................................................... 53 

Figure 3.10: Bro IDS working ........................................................................................................................... 54 

Figure 3.11: Visual representation of the relationship between data-related fields ...................................... 56 

Figure 3.12: Phases of Malware for development of stealth methodologies [99] ......................................... 57 

Figure 3.13: Malware detector ........................................................................................................................ 60 

Figure 3.14: Malware Normalization and Signature Comparison [70] ............................................................ 61 

Figure 4.1: The framework of privacy-preserving data mining [95] ................................................................ 64 

Figure 4.2: Summary of the critical aspects of IoT privacy [124] .................................................................... 65 

Figure 4.3: A classification of the developed privacy preserving data mining algorithms [45] ...................... 67 

Figure 4.4: Somewhat Homomorphic Encryption [92] .................................................................................... 72 

Figure 4.5: Fully Homomorphic Encryption (FHE) [92] .................................................................................... 73 

Figure 4.6. The fragile balance among data privacy and data utility (source [68]) ......................................... 75 

Figure 4.7:  The mechanism of PPDM ............................................................................................................. 75 

Figure 4.8: Classification hierarchy of PPDM techniques based on the location of the computation ............ 76 

 

 

List of Tables 

Table 2.1: Correlations between Services and Service Categories .................................................................. 23 

Table 2.2: The six principle areas are, including examples of applications. .................................................... 33 

Table 3.1: Tools that plays a vital role for performing dynamic behaviour analysis ....................................... 49 

Table 3.2: Bro IDS ............................................................................................................................................ 54 

Table 3.3: Structure of an encrypted virus [13] ............................................................................................... 57 

Table 3.4: Major evasion techniques .............................................................................................................. 58 

 

 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 11 

 

Executive Summary 

This report is a contractual deliverable within the Horizon 2020 Project Cyber-Trust: Advanced Cyber-Threat 

Intelligence, Detection, and Mitigation Platform for a Trusted Internet of Things. It provides the state-of-the-

art in the areas covered by work package WP6 of Cyber-Trust project, which include IoT devices profiling 

methods, malware detection and mitigation techniques, as well as the quest for privacy in the IoT. First, the 

report explores different technologies and approaches for profiling IoT devices in diverse platforms and 

services.  In brief, IoT device profiling methods vary based on the platform and the applications they run and 

the services they offer. Also, the report provides current techniques and approaches for malware detection 

and mitigation. Malware typically includes viruses, worms, Trojans, bots, ransomware, and rootkits. To detect 

such malware, there are two main types of malware detection methods are discussed in this deliverable; 

these include mainly signature and anomaly-based techniques. The first compare software’s signatures 
against existing database repository that hold a collection of pre-defined malware signatures. While the 

anomaly-based, the behaviour of the software/device (or even malware) is monitored against the defined 

set of requirements and against security policy which is a baseline model for normal behaviour of the system. 

The deliverable also provides the quest for privacy in the IoT as such devices generate a large volume of data 

in which there is a need for privacy-preserving, especially with data mining process to prevent any sensitive 

leakage of the confidential data. 

Further, existing heuristic-based techniques and tools are presented, for instance, data perturbation, 

cryptographic techniques, blocking based techniques, hybrid and data anonymization schemes. Finally, it 

should be noted that this deliverable discusses content in which some of them are technical by nature (e.g. 

network profiling, techniques, malware detection mitigation methods). We believe readers with technical 

knowledge (such as CIOs/IOs, network/security experts, IT department staff with at least some entry-level 

security expertise, personnel of LEA, ISAO and ISAC) will be able to benefit from the full extent of this 

deliverable. Non-technical readers might have to skip the technical parts of the content (especially during 

their first reading).   
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1. Introduction 

Internet of Things (IoT) consists of heterogeneous internet-based devices, which generates an enormous 

volume of data, this include sensors, smart devices and other industrialised modules. IoT also introduces 

laudable, presents an exponential increase in the complexity of the network, and in terms of cybersecurity, 

it creates a more vulnerable topology because of the increased complexity, principally due to security 

problems arising from embedded devices and other legacy hardware. Further, with the emerging of IoT 

technologies, malware and criminals can target such devices by exploiting the underlying services and 

existing vulnerabilities in which this introduces number of security risks. This vulnerability challenge is what 

Cyber-Trust aims to investigate and address, to both support the growth of IoT while mitigating the effects 

of complexity and vulnerability when protecting IoT devices. Therefore, profiling such devices for identifying 

potential misbehaviour or infection by malware is critical. In addition, IoT generates an enormous volume of 

data and mining data from those devices requires a safe transition such information via an untrusted network 

(i.e. Internet), in which user data becomes venerable to a variety of potential attacks. Therefore, privacy-

preserving becomes a vital requirement in such activity, especially with the existing threats and the increasing 

number of malware targeting such devices. Hence, this report offers an overview and state-of-the-art in 

those areas.  

1.1 Purpose of the document 

The Cyber-Trust project aims to develop an innovative cyber-threat intelligence gathering, detection, and 

mitigation platform, tackle the grand challenges towards securing the ecosystem of IoT devices. This 

document aims to deliver State-of-the-art on profiling, detection and mitigation regarding advanced Cyber-

Threat Intelligence, Detection, and Mitigation Platform for a Trusted Internet of Things project. 

1.2 Relations with other activities in the project 

The review of IoT profiling, those malware detections and mitigation and privacy issues in data mining are 

directly related to WP5 and WP6. It also highlights different data-related issues and threats within the Cyber-

Trust project; these include identifying aspects that need to be taken care of when deploying Cyber-Trust 

competent and agents. For example, it explores potential data mining issues and challenges as well as cyber 

threats posed by malware that exist in some of the D2.3 Cyber-Trust use case scenarios. It also, intersect with 

the areas covered by work package WP5 of Cyber-Trust project, which include cyber-threat intelligence (CTI) 

gathering and sharing techniques, trust establishment and risk assessment, as well as game-theoretic security 

in which that the gathered and shared data should be privacy-preserved. 

1.3 Structure of the document 

This document is organized into four main sections, including the current introduction (section Error! R

eference source not found.) and references, in order to achieve the abovementioned aim. More precisely, 

the rest of the document is structured as follows: 

• Section 2 demonstrates IoT devices profiling methods. This section shows SDA operating on Linux-

based distribution such as power consumption, performance profiling, and memory usage. This part 

follows by SDA App and with cloud service. The next part of this section is about IoT Connections in 

terms of short-range wireless such as Bluetooth mesh networking and Bluetooth low energy, ZigBee, 

Z-Wave, Wireless Fidelity (Wi-Fi), IPv6 Low-power wireless Personal Area Network (6LowPAN), 

Thread, and Light Fidelity (Li-Fi). This part is followed by demonstration Cellular Technologies such as 

Extended Coverage-GSM-IoT (EC-GSM-IoT), Narrow-Band IoT (NB-IoT), LTE-Machine Type 

Communication (LTE-MTC) and enhanced Machine Type Communication (eMTC).  The next part of 

this section is to show Long-range Wireless Technologies, for instance, LoRa (LoRa PHY and 
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LoRaWAN), and Sigfox, Weightless. The last part is about Log files and Network profiling, such as 

protocols, ports, volume Traffic & Muddy Filtering. This section finally concludes. 

• Section 3 presents the state-of-the-art of malware detection and mitigation. This section explains the 

classification of malware such as viruses, worms, Trojans, backdoor and Ransomware.  Then, 

Malware Analysis Techniques mainly, basic static analysis, advance static analysis, and basic dynamic 

analysis such as the virtual box, process monitor, process explorer, ApateDNS, Wireshark, Sandboxes, 

and finally advanced dynamic analysis. The final part of this section is about evasion of malware and 

anti-evasion approaches. 

• The last section presents the quest for privacy in the IoT which introduces the need for privacy-

preserving data mining, heuristic-based techniques and tools, cryptography-Based Techniques and 

tools, and homomorphic encryption Techniques, such as homomorphic encryption, somewhat 

homomorphic encryption, fully homomorphic encryption, and limitations and generations.  
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2. IoT Devices profiling methods 

2.1 Introduction 

Cyber-Trust project aims to combat potential threats posed by the adoption of IoT by building a proactive 

cyber-threat intelligence gathering and sharing platform. As the services being offered via IoT platforms are 

becoming highly pervasive, ubiquitous, and distributed, any concerns about our society’s security are 

amplified due to the appearance of new forms of sophisticated threats and cyber-attacks. However, IoT 

devices are essentially resource-constrained in terms of computation, battery power, intermittent 

connectivity, and network protocols. In which, achieving the Cyber-Trust ultimate goal requires investigating 

and developing optimal solutions compatible with such limitations and constraints that exist in IoT. Typically, 

IoT devices operate and utilise different computing services and protocols; these include cloud platforms, 

network protocols, customised operating systems and wireless connections technologies. Thereby, profiling 

and monitoring such devices’ behaviour and security require incorporating various layers and approaches to 

attribute and profile malicious activities and threats throught the developing of the device and network 

profiling services that the Cyber-Trust ecosystem aims to facilitate. The rest of this chapter explores and 

discusses existing IoT devices profiling methods including SDA and could services, ioT connections and 

network profiling. 

2.2 Device Profiling  

The estimated usage share of operating systems in personal computing and smartphones area is considered 

separate from the area of desktop computing. In the personal computing platform area of smartphones and 

watches two systems dominate: Google's Android with around 86% of the market share and Apple’s iOS with 
around 14% [113], while in the area of desktop and laptop computers, Microsoft Windows is generally above 

75% in most markets, Apple's macOS at around 13%, the remaining share is spread between Google's 

ChromeOS and Linux [41]. All these figures vary somewhat in different markets and depending on how they 

are gathered. 

The Smart Device Agents (SDA) and Smart Gateway Agents (SGA) are the two Cyber-Trust components 

responsible for the acquisition of information from the end user IoT devices and gateways respectively and 

represent the links with the Cyber-Trust core components hosted on the service provider layer. Monitoring 

of the end user’s gateway is by default inactive as it enables active monitoring for all connected devices and 
the need to transfer exchanged traffic to the Cyber-Trust backend for Deep Packet Inspection (DPI); the user 

may enable/disable this option through their profile at any time after they have clearly consented. In contrast 

to SGA, SDA operates in a more restrictive manner as its purpose is to receive information regarding new 

vulnerabilities and modes of operation from the Profiling Service and to communicate back in the occurrence 

of a suspicious event.   

As a form of data minimisation and a measure of gathering only data that serve a legitimate purpose, the 

SDA exhibits intelligence and performs real-time monitoring. Different flavours of SDA will be implemented 

within the framework of Cyber-Trust as a range of smart devices need to be accommodated with mainly two 

modes of operation: one being for continuous/ real-time operation and the latter for ad-hoc operation when 

the circumstances call for it.  

The SDA is responsible primarily for the monitoring of device’s usage, critical files, security status (patching 
status, firmware integrity, vulnerability risk) as well as suspicious network transactions, and secondly for the 

application of mitigation policies and remediation actions after the detection of an attack or threat that could 

endanger the integrity and operation of the monitored device. Due to its intended operation, the SDA is 

designed to check whether the hosting device performs as intended by its manufacturer, ensures that critical 

OS files are uncompromised and that only secure means of communication are used. Data regularly synched 

with the Profiling Service involve information regarding runtime processes and used hardware resources. 
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Only in the case of identified suspicious traffic and activity, network packages are signed by SDA and 

communicated with the CT Cyber Defense service for further investigation.  

Data from the SDA and SGA are communicated to the Profiling Service (PS), responsible for the storage and 

management of Cyber-Trust generated and acquired data. In particular, two separate access control layers 

are supported: one for defining architectural policies and one for controlling runtime operations for matching 

use preferences.  

According to market research [36], the IoT device market is expected to further grow, with billions of devices 

connected to the internet in the near future. As such, the IoT device market represents a huge opportunity 

for device manufacturers. IoT devices are typically shipped in very high volumes, due to this, most IoT devices 

follow a simple design to prevent any defects from occurring due to hardware malfunction. A typical IoT 

device structure consists of a microcontroller (MCU), a Power Management Integrated Circuit 

(PMIC), a Radio Frequency Integrated Circuit (RFIC), various metering or detection sensors and small 

batteries such as coin batteries to perform metering or monitoring tasks and communicate with edge or 

cloud services. Since IoT devices are typically used without power lines, the battery can seldom be re-charged 

or replaced. In order to minimize current consumption, IoT devices therefore typically only maintain active 

mode for brief periods of time, mostly operating in a sleep mode.  

Three different SDA implementations will be developed within Cyber-Trust to accommodate the following 

classes of IoT devices:  

• Devices running a Linux-based OS distribution  

• Apps to run on smart TVs and smartphones  

• Devices implemented to use IoT cloud Services  

Generally, profiling refers to recording and analyzing data to characterize personal behaviour to assess or 

conclude their personal interests in a specific domain or for differentiation objectives [102]. Off-the-shelf 

data mining tools can depict a full image of the customer requirements and easily offer a thorough customer 

profile. Following the rule “know your customer” [130, 4], in e-commerce, online profiling is a key tool for 

companies to better comprehend their customer wishes. Profiling data is progressively utilised for target 

advertisements, Web sites personalization, and service matching. However, profiling leads to privacy damage 

when employed to learn a lot about a user such as political and religious views, sexual orientation, and/or 

medical conditions [133, 53, 54], priceless information that can be collected, shared, and sold without even 

a customer’s consent [8, 37, 14, 78].  

The growing of Internet-connected systems and the evolution of data mining algorithms and tools 

considerably participated in the emergence of big data [150]. From IoT and big data perspectives, the 

argument is that limiting access to private/personal data negatively influences the precision of the data 

mining exercise. In addition to this conflict of interest between privacy and profiling, it has been noticed that 

identification and tracking threats further aggravate the potentials for profiling and increase the risks of 

privacy leakage by data hunting black markets. 

There are three potential techniques of monitoring and profiling that provide grounds for differentiation in 

IoT systems:  

1.  Data collection that leads to conclusions about the user, for instance, Internet browsing behaviour. 

2. Profiling at large through linking IoT datasets (sometimes called ‘sensor fusion’). 

3. Profiling that occurs when data is shared with third parties that combine data with other datasets 

such as employers and insurers. 

Users can have access to an unprecedented number of personalized services, all of which would offer 

considerable data, and the environment itself would be able to obtain information about users automatically. 

Random, invasive profiling and inferential analytics can result from data sharing, in particular when several 

IoT devices offer data that is connected to a single user identity [101]. 

https://www.sciencedirect.com/topics/computer-science/acquire-information
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Identification technologies permit precisely this type of linkage. By linking multiple devices and the data they 

produce to a single user identity, the usage of a device or service can be personalized, based upon previous 

behaviours and preferences, and inferences drawn from these data [37]. Privacy risks of linkage between 

datasets become particularly critical when central authentication systems (e.g. SSO) or identity stores have 

access to data that authenticated devices generate. While possibly providing better user experience, linkage 

and personalization across several IoT devices and services nevertheless pose risks to user privacy. Data 

controllers can draw inferences about the user unrelated to the planned operation of the devices and services 

[78]. Device identification can be employed to link together a user's behaviours, even if each of the datasets 

is individually handled responsibly and properly de-identified. Algorithms can be utilised to update user 

profiles continuously to predict their behaviour and match their preferences [169]. 

Part of the challenge of controlling profiling is the uncertain value of data that sensors create. This has been 

described as ‘sensor fusion’ [154]. In addition to the stream of data collected, the possible inferences drawn 

can be broader if combined with other data categories from the IoT. For instance, Fitbit opens insight into 

the user's health status such as heart rate, as well as into user's movement such as geolocation data and 

steps taken per day [110]. Linking these two data streams could lead to further privacy offensive inferences 

[163]. Similarly, it has been argued that existing smartphone sensors can be used to infer a user's mood; 

stress levels; personality type; bipolar disorder; demographics (e.g., gender, marital status, job status, age); 

smoking habits; overall well-being; progression of Parkinson's disease; sleep patterns; happiness; levels of 

exercise; and types of physical activity or movement [150, 169, 163, 110].  

Eskens have made a similar point about the ‘Nest’ brand thermostat, which “collects data such as current 

temperature, humidity, ambient light, and whether something in the room is moving” [162]. Depending on 

this data, which is gathered to adjust the temperature automatically, inferences can be made about the 

presence and specific location of occupants in a home, their current state such as asleep or awake, and other 

aspects of home activity [162]. These examples illustrate that smart devices need to gather data and make 

inferences (for instance, is the person at home? or does the temperature need to be adjusted?) in order to 

work appropriately [161], but this can simultaneously and inadvertently lead to interventions into the privacy 

of the customers. 

While some inferences and profiling drawn from IoT can be benign – for instance when data is utilised to 

provide a more personalized user experience – they can also cause unfair differentiation such as economic 

or gender-based [163]. The likely for discrimination holds true even when using non-sensitive data categories, 

from which sensitive information can still be concluded [12]. Third parties with access to IoT data connected 

to an identified target can use this data for aims with which the user would not approve if asked. For instance, 

Fitbit data could be relevant to prospective employers, who could make inferences about impulsivity and the 

inability to delay gratification-both of which might be inferred from one's exercise habits-correlate with 

alcohol and drug abuse, disordered eating behaviour, cigarette smoking, higher credit-card debt, and lower 

credit scores. Lack of sleep-which a Fitbit tracks-has been linked to poor psychological well-being, health 

problems, poor cognitive performance, and negative emotions such as anger, depression, sadness, and fear 

[163]. 

Employers are not the only third parties possibly interested in this data. It has been clarified that data 

controllers progressively use the IoT for “monitoring people's online behaviour and using the information 

collected to show people individually targeted advertisements” [165]. The researchers forebode that a lack 

of awareness of such methods can be discriminating to customers; therefore, an increased level of 

transparency is needed. It has similarly been maintained that opaque profiling and automated decision-

making in advertisements can represent a threat to diversity. Furthermore, even the neutral data (e.g. 

postcodes) can lead to inference and discrimination based on ethnicity, gender, or sexual preference 

especially when datasets are linked [160].  

Weaknesses of anonymisation to prevent profiling and resulting discrimination lead to further problems. 

According to Gudgel, “there is special concern that if data is not anonymized then it could potentially be used 

to track specific individuals, linked to information in other databases, and possibly used to predict future 

behaviour” [80]. Chasing data of the type that many IoT devices create is notorious for opening to re-

https://www.sciencedirect.com/topics/computer-science/authentication-system
https://www.sciencedirect.com/topics/computer-science/user-experience
https://www.sciencedirect.com/topics/social-sciences/cardiovascular-systems
https://www.sciencedirect.com/topics/computer-science/geolocation-data
https://www.sciencedirect.com/topics/computer-science/data-stream
https://www.sciencedirect.com/topics/social-sciences/mobile-phones
https://www.sciencedirect.com/topics/computer-science/personality-type
https://www.sciencedirect.com/topics/social-sciences/marital-status
https://www.sciencedirect.com/topics/computer-science/parkinsons-disease
https://www.sciencedirect.com/topics/computer-science/current-temperature
https://www.sciencedirect.com/topics/computer-science/current-temperature
https://www.sciencedirect.com/topics/computer-science/current-state
https://www.sciencedirect.com/topics/computer-science/prospective-employer
https://www.sciencedirect.com/topics/social-sciences/disordered-eating
https://www.sciencedirect.com/topics/social-sciences/debts
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https://www.sciencedirect.com/topics/computer-science/reidentification
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identification and reverse engineering of identity. Following the assumption that data cannot always be 

anonymised without destroying its analytical value, non-technical ways may be necessary to inhibit profiling 

and discrimination in the IoT [119]. One possible solution is to treat all IoT created data that refers to a user 

as personal data under data protection law, as it will continuously be potential in principle to link the data 

back to a user. This method would ensure that the user would be able to use his/her rights granted under 

data protection law overall information that IoT devices generate and control. This concept would not avoid 

profiling as a result; but rather, lengthen the scope of existing user rights against privacy risks to cover all 

data, including inferences and profiles. 

These problems will be expanded and magnified by the proliferation of machine learning in the IoT [163]. 

Machine learning will cause even less expected inferences, while the complexity and opaqueness of machine 

learning algorithms can unintentionally hide discriminatory treatment from customers [160]. Systems 

operating as ‘black boxes’, for which the inputs, internal logic, and outputs may be unavailable or 

incomprehensible to specific users do not facilitate systematic observation, identification of harmful effects, 

or investigation of their causes [161, 12]. Machine learning can inadvertently and unknowingly reinforce 

existing biases and prejudices as a result [80].  

European legislators have specified the hazards of profiling and discrimination, although often lacking 

comprehensive recommendations [119]. European regulators have highlighted that the major concerns in 

declarations on profiling, acknowledging that profiling offers grounds for discrimination, particularly when 

datasets are joint. The European Commission has called for the creation of a set of guiding standards to 

manage IoT regulation, urging that always being linked to the things around us can cause more observation 

or more profiling by public authorities and private entities. Correspondingly, the European Data Protection 

Supervisor has raised concerns that RFID tags employed in IoT systems might cause profiling by linking 

customers to devices and usage records [66].  

Similar concerns are reproduced in the General Data Protection Regulation (GDPR), particularly in Article 21 

(Right to object) and Article 22 (Automated individual decision-making, including profiling). Article 21 

presents the right of data subjects to object to data processing, including profiling, at any time. If the aim of 

data processing is direct marketing, the data subject will have an absolute right to object. In all other cases, 

data processing must end unless the data controller can prove compelling legitimate interests that override 

the interests of the data subjects. Regrettably, the framework does not define compelling interests of data 

controllers [111], leaving both data controllers and data subjects in an uncertain state. On top of this 

uncertainty, the technical feasibility of stopping data collection is also challenging. How data controllers can 

handle objections beyond stopping all service provision remains unclear. Consequently, users worried about 

their privacy or IoT-facilitated profiling might be left with a binary ‘take it or leave it’ choice. 

Article 22 presents further protections against automated decision-making, including profiling, but just when 

data processing is only automated and has legal or similar significant influences. The scope of applicability is 

thus likely to be very limited, at least while these terms (‘solely automated’, ‘legal or similarly significant 
effects’) stay undefined in practice [160]. In cases where such decision-making and profiling are essential for 

entering or accomplishing a contract between data subject and the data controller, or grounded on explicit 

consent (Article 22 (2) (a) and (c)), data subjects are granted rights to acquire human involvement on the part 

of the controller, to express a perspective and to contest the decision (Article 22 (3)). If automated decision-

making, including profiling, has major impacts on a data subject, individuals will possess a legal remedy if 

they upset with the outcome. Lastly, at first sight, Article 11 in the GDPR seems to be beneficial. This provision 

echoes the idea of only identifying data subjects for as long as necessary. However, as stated above, 

discrimination is also possible through extraneous additional, non-personal or anonymous data. In those 

cases, data protection law either does not apply or offers insufficient protection. With a broader and well-

defined scope of applicability, these rights would provide a very promising method for data subjects to 

maintain some control over how the data is employed to personalize services and future opportunities. 

https://www.sciencedirect.com/topics/computer-science/reidentification
https://www.sciencedirect.com/topics/computer-science/potential-solution
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2.3 SDA with Cloud Services 

The computational power required to implement such IoT devices is quite small by modern standards. 

Moreover, so, they have been developed with simple processor technologies — mostly using ARM’s Cortex 
M architecture and use an equally simple Operating System and software stack [171]. 

There are various types of Operating Systems, and pretty much every single computer, embedded or not, will 

have an operating system controlling it. IoT devices tend to use a type called RTOS, which officially is short 

for Real-Time Operating System (aka Not-a-Full-Featured Operating System). The main draw for using an 

RTOS is its simplicity and its modest requirements of resources for itself, as the selection of features required 

from the operating system is done at the time the image is being built, so as the consumer only pays for what 

the device users in terms of computational resources. Using such a lightweight operating system allows 

designers to design smaller, cheaper, and less power-hungry embedded computers for their IoT devices. 

Such devices do not allow or may tolerate third-party services to be accommodated onboard the IoT device 

itself. Due to this, monitoring of such devices will be performed based on the exposed API of the IoT cloud 

network onto which it is built for communication with backend cloud services. There are at least 49 IoT cloud 

platforms exist in today's global market to meet the requirements of different user and application groups 

such as enterprises, government, farmer, healthcare, communication, transportation, and manufacturing 

[121]. Nevertheless, lack of overall knowledge about these IoT cloud platforms restricts researchers and 

enthusiasts to choose a particular cloud when they are in phase with the development of any product or 

solution utilising IoT enabled technologies. Several articles [122, 123] are found that develop and apply IoT 

solutions based on the existing clouds that are a matter of study in this paper. Strong need for integration of 

cloud and IoT is mentioned in [153] where an agent-oriented and cloud-assisted paradigm is envisaged based 

on a novel reference architecture [121].  

 

Figure 2.1: SDA Monitoring through Cloud Networks 

Considering the need for the accommodation of as many platforms as possible, Cyber-Trust will implement 

a generalized solution for the integration of web-services provided by various IoT cloud network providers as 

shown in Figure 2.1. Another alternative to this approach is shown Figure 2.2, where an embedded system 

installed in the local environment of the end-user will be responsible for regularly gathering as much 

information as possible through the supported and already established communication channels. An example 

IoT cloud network is Tuya for which an easy-to-use open source API for devices that use Tuya's cloud services 

exist [172]. 
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Figure 2.2: SDA Hybrid Monitoring through Cloud Networks 

2.4 SDA operating on Linux-based distribution 

For more powerful IoT devices equipped with a Linux- based distribution that allows access to the root OS, a 

different SDA flavour will be implemented in Cyber-Trust. A number of IoT devices bear lightweight Linux 

based distributions, and these devices are probably the ones providing most liberty in the monitoring and 

detection of various events. Such devices include embedded systems such as raspberry PIs, TV boxes etc.  

For this class of IoT devices, the end user will be provided with an executable file to be installed on the end 

device of interest. Once the SDA agent is installed on the end device, the agent is paired with the profiling 

service and the SDA may be configured remotely (see Figure 2.3). 

 

Figure 2.3: SDA operating on Linux Based Device 
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2.5 SDA App 

Mobile app development since a few years ago followed a traditional development workflow where apps 

were developed in a programming language native to the device and operating system. This approach 

entitled that in case a mobile app needed to support multiple platforms (i.e. Android, iOS), the development 

process needed to be repeated for each platform separately. Following this approach, no code could be 

shared between app versions and as a result, the development time was significantly increased. Due to this 

and the need for the majority of apps to support multiple platforms, the concepts of cross-platform and 

hybrid development are introduced. 

Cross-platform mobile apps are developed using an intermediate language, such as JavaScript, that is not 

native to the device’s operating system. This means that some, or all, of this code can be shared across target 

platforms – for instance, across both iOS and Android. Cross-platform apps are different to HTML5 hybrid 

apps as hybrid apps usually incorporate a mix of native app and mobile app concepts; making them more 

powerful and flexible compared to apps developed with a cross platforms framework such as Xamarin [22], 

or PhoneGap [132]. HTML5 hybrid mobile apps are cross-platform apps but render the user interface using 

an embedded web browser, leveraging HTML, CSS and JavaScript. As a result, building the core part of the 

app using web technologies allows for faster development and greater flexibility, as the core of an app may 

be compiled for different platforms (i.e. Android, iOS) and device types (i.e. smartphones, tablets, smart TVs). 

 

Figure 2.4: Hybrid Mobile app development 

Considering the above-mentioned methodologies and the fact that the SDA for Cyber-Trust needs to be as 

flexible and versatile as possible, the Ionic hybrid framework will be utilised during development. Ionic is a 

complete open-source SDK for hybrid mobile app development created in 2013. The original version was 

released in 2013 and built on top of AngularJS and Apache Cordova, while the more recent releases, known 

as Ionic 3 or simply "Ionic", are built on Angular [23] (see Figure 2.4). 

For device monitoring, ionic provides a number of plugins that allow the monitoring of runtime processes, 

CPU and memory usage as well as a number of libraries for the monitoring of various other aspects of the 

hosting device.   

• Monitoring of runtime processes: Ionic DevApp extends the capabilities of Ionic Framework, making 

it easy to test apps directly on devices. DevApp offers a real-time view of changes as they are being 

made, with a rich library of pre-installed native plugins to test native features of the app. 
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• CPU usage: The “chrome.system.cpu” plugin provides the ability to query basic CPU information of 

the system [51]. The exposed API of this plugin allows getting information regarding the architecture, 

type, model and features of the processing unit as well as runtime properties of each core such as 

cumulative usage info for this logical processor (user, kernel, idle and total). For some devices, the 

plugin may also provide temperature information. 

• Memory Usage: depending on the hosting platform, a number of libraries are available for the 

monitoring of an apps memory usage (i.e. safari dev tools and chrome dev tools), however, the 

“chrome.system.memory” cordova plugin [32] provides the ability to get physical memory 

information regarding the memory capacity of the device and the available memory capacity. 

• Monitor network traffic: the cordova-plugin-network-information plugin may be used to gather 

information regarding the device's cellular and WiFi connection, and whether the device has an 

internet connection. Additionally, through this plugin, the SDA may listen to offline and online events 

check the connection type, get triggered when the device goes offline etc. 

In contrast to smartphones, there is no one standard ensuring compatibility with Smart TVs as these devices 

are hugely affected by their different specs, resolutions, processing power and OS versions making most 

Smart TV apps incompatible with most platforms. However, the choice of the Ionic Framework seems 

promising in this scenario as it is the most widely used technology used for Smart TV app development is the 

combination of HTML/ CSS and JavaScript. 

2.6 Services 

Services [52] are software possess protocols and technologies that enable devices to extend and enhance 

their functionalities. For example, such functionalities are a) configuration of information infrastructure, the 

protection of device towards to malicious attacks, secure transfer files, allow computers to download files 

and make them available to other users on the network etc. Ideally, users would like to execute every Service 

for dissemination, mitigation, encryption etc. in every device and Operational System (OS), but by the time 

this is not feasible. 

2.6.1 Computer Services  

Simple Network Management Protocol (SNMP) is a protocol for:  

• remote devices’ configuration, 

• monitor network performance,  

• audit network usage,  

• discover of network faults,  

• detect inappropriate access, 

• gathering and organising the information 

SNMP also possess management applications and services, such as SNMP Management API and WinSNMP 

API. The former has a set of functions that can be used to the rapid development of basic SNMP management 

systems. Moreover, the latter supports a set of functions for encoding, decoding, sending and receiving SNMP 

messages. Encoding and decoding are applicable in data communications, networking, and storage especially 

radio communications systems. 

Microsoft Server Message Block (SMB) [53] is an application that is installed by default in Microsoft Windows 

Server and implemented by the network file sharing SMB protocol. The third version of SMB (SMBv3) 

protocol has the SMB Encryption feature, but it is not configured by default. 

Google Cloud DNS [35] composed by a scalable, reliable and managed authoritative Domain Name System 

(DNS) service running on the same infrastructure as Google. Cloud DNS enables the translation requests to 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 22 

 

domain names into IP addresses. Also, it is a flexible and programmable tool, it could easily publish and 

manage millions of DNS zones and records using our simple user interface, command-line interface or API. 

App Net Manager is a secure web-based portal that is used by users in order to create, configure, modify, 

delete, and monitor the components of the network. It is also, available through the Compute Classic web 

console [54]. 

2.6.2 Router Services 

Router’s Services possess software and hardware solutions that allow devices to have capabilities regarding 
device and network activities. Such software capabilities are regarding to intrusions prevention, content 

security, monitoring, network data transferring, mitigation actions. Moreover, router’s Services enables 
devices get visibility into and control over activity across your network. Delivering network information 

enhance threat defence of the device and of the entire network as well.  

Services such as IPSec, SSL and VPN are protocols which safeguard information from cyber-attacks (e.g. 

malware etc.). More analytic, IPSec and SSL protocols are both designed to secure data in transit through 

encryption. Also, VPN encryption prevents third parties from reading user’s data as it passes through the 
internet. 

Trust Management Systems (TMS) applications that enables users to utilize an integrated, centralized and 

easy security management. Some of the domain systems that manage are firewalls, application control, 

intrusion prevention, URL filtering and protection towards malicious attacks.   

Simple Network Management Protocol (SNMP) applications, such as SNMP Management API and WinSNMP 

API applied to routers for monitor the actions of devices, such as, the volume and the frequency of data etc. 

Most of the times, routers possess Network Address Translation (NAT) protocols, which allows all devices on 

a subnetwork, such all the devices in a store, to share the same public IP address. 

Although emphasizing in software solutions there are mature hardware market solutions. Hardware 

solutions either referring to hardware solutions applied to routers or are hardware itself, are sophisticated 

solutions in order to beat complex cyber-attacks, such as, Cisco Series for firewall solutions, HP Networking 

Routers etc.  

2.6.3 Camera Services 

An IP camera (Internet Protocol camera), is a device that has access to network and have the capability to 

transfer data via Internet. In order to interconnect IP camera to cloud for storing data (e.g. photos and 

videos), network protocols are provided. Such protocols are TCP/IP and UDP, FTP. 

User Datagram Protocol (UDP) is a connectionless protocol and provides rapid transmission of data. For this 

reason, sometimes keeps real-time data ignoring data confirmation and packet loss.  

Transmission Control Protocol (TCP) enables data to be transmitted with integrity confirmation. 

FTP server is another mechanism for image transferring towards to internet, it is based on File transfer 

protocol (FTP).  

Routing Information Protocol (RIP) based on the UDP, is used in order to implement mechanisms for prevent 

incorrect routing information from being propagated. 

Cloud DNS is an application based on Domain Name System (DNS) and UDP protocols. Cloud DNS enables 

the translation requests to domain names into IP addresses (e.g. Google Cloud DNS etc.) [56]. 

2.6.4 Smartphone Services & Tablet Services 

Mobile Device Managers Plus (MDMP), is a suggested solution for the smartphone’s Device Management.  

Generally, smartphones, tablets do not support Services for Device Management. For this reason, a 

suggested solution is the upload of the Mobile Device Manager Plus. MDMP enables system administrators 
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to manage mobile Android devices running version 4.0 and above. This Android mobile device management 

(MDM) software empowers administrators to monitor, manage, audit, and secure corporate data on those 

devices. It also offers advanced controls and enhanced Android MDM capabilities. 

Android.Opfake provided by Symantec is a mature application that detects Trojan horses on the Android 

platform and sends SMS texts to premium-rate numbers [56]. 

Java.Opfake provided by Symantec is a mature application that detects Trojan horses on mobile devices and 

sends SMS texts to premium-rate numbers [57]. 

WatchHound Cell Phone Security Monitor continuously scans any mobile phone prohibited area for wireless 

activity essentially creating wireless-free zones without the need for jamming. All incoming and outgoing 

cellular calls are detected (in active or standby mode) and time stamped for later analysis. 

2.6.5 Gateway Services 

Gateway is a node in a computer network, and it is responsible for data sharing trough networks. For this 

reason, security mechanisms are provided to gateway in order to enhance data safety and safeguard sensitive 

information of the device. Most of the times gateways behave as routers, since they manage packets of data 

and control information paths. Most of the router services are applied to gateway services. Gateways services 

are responsible for data sharing, accessing in different networks, download files from internet etc 

Exterior Gateway Protocol (EGP) is used to exchange routing information between autonomous systems. It 

is one of the main protocols for data communication across the internet.  

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol. The BGP service provides 

routing decisions in the internet based on network policies, rules that implemented by network 

administrator. In this way they mitigate network threats and malicious attackers. 

2.6.6 Categories Services 

The classification of Services into categories is not a simplistic procedure, since services are constructed, for 

different domain-utilities, for various frameworks and various levels of processes (high, moderate, low. The 

types of Services that are described are characterized by discrete and low-level processes.  The subcategories 

of Services that identified are a) File transfer services, b) Encryption/Decryption services, c) Monitoring 

services, d) Data format transformation services, e) Mitigation Threats Services. 

Table 2.1: Correlations between Services and Service Categories 

 File transfer 

services 

Encryption/

Decryption 

services 

Monitoring 

services 

Data format 

transformat

ion services 

Mitigation 

Threats 

Services  

SNMP Management API   x   

WinSNMP API   x x  

SMB x x    

Google Cloud DNS   x x  

App Net Manager   x   

IPsec &SSL  x x  x 

VPN  x    

TMS   x  x 

UDP x     

TCP/IP x     

FTP server  x     

RIP x  x   

MDMP   x  x 

Android.OpFake     x 
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Java.OpFake     x 

WatchHound   x  x 

EGP x   x  

BGP   x x x 

 

As indicated in Table 2.1: the majority of the Services that are described have capabilities in order to mitigate 

cyber threats and malicious attacks towards devices as well as, they also have capabilities in order to monitor 

the devices’ conditions (e.g. traffic, abnormalities etc.).  

2.7 IoT Connections 

2.7.1 Short-range wireless 

2.7.1.1 Bluetooth mesh networking and Bluetooth low energy 

Bluetooth mesh networking is a protocol based upon Bluetooth Low Energy that allows for many-to-many 

communication over Bluetooth radio. Bluetooth Low Energy (Bluetooth LE, or BLE, formerly marketed as 

Bluetooth Smart) is based on mesh networking principles. The mesh network operation is designed to: 

• enable messages to be sent from one element to one or more elements; 

• allow messages to be relayed via other nodes to extend the range of communication; 

• secure messages against known security attacks, including eavesdropping attacks, man-in-the-

middle attacks, replay attacks, trash-can attacks, brute-force key attacks, and possible additional 

security attacks not documented here; 

• work on existing devices in the market today; 

• deliver messages in a timely manner; 

• continue to work when one or more devices are moved or stop operating; and 

• have built-in forward compatibility to support future versions of the Mesh Profile specification 

BLE technology operates in the same spectrum range (2.400–2.4835 GHz ISM band) as classic Bluetooth 

technology but uses a different set of channels. It can serve IoT devices in cells with a radius over 100m and 

supports data rates in the range 1 – 2 Mbps. 

2.7.1.2 ZigBee 

ZigBee, like Bluetooth, has a large installed base of operation, although perhaps traditionally more in 

industrial settings. ZigBee PRO and ZigBee Remote Control (RF4CE), among other available ZigBee profiles, 

are based on the IEEE802.15.4 protocol, which is an industry-standard wireless networking technology 

operating at 2.4GHz targeting applications that require relatively infrequent data exchanges at low data-rates 

over a restricted area and within a 100m range such as in a home or building.  

ZigBee/RF4CE has some significant advantages in complex systems offering low-power operation high 

security, robustness and high scalability with high node counts and is well positioned to take advantage of 

wireless control and sensor networks in M2M and IoT applications.  

The latest version of ZigBee is the recently launched 3.0, which is essentially the unification of the various 

ZigBee wireless standards into a single standard. 

2.7.1.3 Z-wave 

Z-Wave is a low-power RF communications technology that is primarily designed for home automation for 

products such as lamp controllers and sensors among many others. Optimized for reliable and low-latency 

communication of small data packets with data rates up to 100kbps, it operates in the sub-1GHz band and is 

impervious to interference from Wi-Fi and other wireless technologies in the 2.4-GHz range such as Bluetooth 
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or ZigBee. It supports full mesh networks without the need for a coordinator node and is very scalable, 

enabling control of up to 232 devices. Z-Wave uses a simpler protocol than some others, which can enable 

faster and simpler development, but the only maker of chips is Sigma Designs compared to multiple sources 

for other wireless technologies such as ZigBee and others. 

2.7.1.4 Wireless (Wi-Fi) 

 Wi-Fi connectivity is often an obvious choice for many developers, especially given the pervasiveness of Wi-

Fi within the home environment within LANs. It requires little further explanation except to state the obvious 

that clearly there is a wide existing infrastructure as well as offering fast data transfer and the ability to handle 

high quantities of data.  

Currently, the most common Wi-Fi standard used in homes and many businesses is 802.11n, which offers 

serious throughput in the range of hundreds of Mbps, which is fine for file transfers but maybe too power-

consuming for many IoT applications.  

2.7.1.5 IPv6 Low-power wireless Personal Area Network (6LowPAN) 

A key IP (Internet Protocol)-based technology is 6LowPAN. Rather than being an IoT application protocols 

technology like Bluetooth or ZigBee, 6LowPAN is a network protocol that defines encapsulation and header 

compression mechanisms.  

The standard has the freedom of frequency band and physical layer and can also be used across multiple 

communications platforms, including Ethernet, Wi-Fi, 802.15.4 and sub-1GHz ISM. A key attribute is the 

Internet Protocol version 6 (IPv6) stacks, which has been a very important introduction in recent years to 

enable the IoT. IPv6 is the successor to IPv4 and offers approximately 5 x 10 28 addresses for every person in 

the world, enabling any embedded object or device in the world to have its own unique IP address and 

connect to the Internet. Specially designed for home or building automation, IPv6 provides a basic transport 

mechanism to produce complex control systems and to communicate with devices cost-effectively via a low-

power wireless network. 

2.7.1.6 Thread 

A very new IP-based IPv6 networking protocol aimed at the home automation environment is Thread. Based 

on 6LowPAN, and also like it, it is not an IoT applications protocol like Bluetooth or ZigBee. However, from 

an application point of view, it is primarily designed as a complement to Wi-Fi as it recognises that while Wi-

Fi is good for many consumer devices that it has limitations for use in a home automation setup.  

Made available in mid-2014, Thread it is a royalty-free protocol based on various standards including 

IEEE802.15.4 (as the wireless air-interface protocol), IPv6 and 6LoWPAN, and offers a resilient IP-based 

solution for the IoT. Designed to work on existing IEEE802.15.4 wireless silicon from chip vendors such as 

Freescale and Silicon Labs, Thread supports a mesh network using IEEE802.15.4 radio transceivers and is 

capable of handling up to 250 nodes with high levels of authentication and encryption. A relatively simple 

software upgrade should allow users to run a thread on existing IEEE802.15.4-enabled devices.  

2.7.1.7 Light Fidelity (Li-Fi) 

Li-Fi is a wireless communication technology where the devices are using light to exchange data. Li-Fi is a 

derivative of optical wireless communications technology using light as a medium to deliver networked, 

mobile, high-speed communication similarly to Wi-Fi. As of nowadays, Li-Fi remains a niche market, primarily 

used for technology evaluation in the IoT sphere. 

2.7.2 Cellular Technologies  

2.7.2.1 Extended Coverage-GSM-IoT (EC-GSM-IoT) 

EC-GSM-IoT enables new capabilities of existing second generation (legacy) cellular networks for Low Power 

Wide Area (LPWA) IoT applications. EC-GSM-IoT can be activated through new software deployed over the 
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GSM serving areas. The benefit is the use of already deployed infrastructure (GSM network nodes) to offer 

extensive coverage and serve IoT devices. 

2.7.2.2 Narrow-Band IoT (NB-IoT) 

NB-IoT is a Low Power Wide Area Network (LPWAN) radio technology standard developed to enable a wide 

range of cellular devices and services. The NB-IoT specification is described in 3GPP Release 13 (LTE Advanced 

Pro). NB-IoT uses a subset of the LTE standard and as the name implies to use a fraction of LTE bandwidth 

(200 kHz). The Narrow-Band IoT focuses specifically on indoor coverage, serves low-cost end devices, 

provides a long battery life (to connected devices) while it can serve a large population of connected devices.  

2.7.2.3 LTE-Machine Type Communication (LTE-MTC) and enhanced Machine Type Communication 

(eMTC) 

The following standards-based family of technologies supports several LTE technology categories, such as 

Cat-1 and CatM1, both suitable for the IoT ecosystem. 

• enhanced Machine Type Communication (eMTC) 

• LTE-Machine Type Communication (LTE-MTC) 

LTE-MTC is a type of Low Power Wide Area Network (LPWAN) and includes eMTC (enhanced Machine Type 

Communication) radio technology standard developed by 3GPP to enable a wide range of cellular devices 

and services (specifically, for Machine-to-machine and Internet of Things applications). 

The specification for eMTC (LTE CatM1) is defined in 3GPP Release 13 (also known as LTE Advanced Pro). The 

advantage of LTE-M over NB-IoT is its comparably higher supported data rate, mobility, and voice over the 

network, despite it requires more bandwidth, which comes at an increased cost. 

2.7.3 Long range Wireless Technologies 

2.7.3.1 LoRa (LoRa PHY and LoRaWAN) 

LoRa stands for Long Range and it is a digital wireless data communication technology which uses license-

free sub-gigahertz radio frequency bands like 169 MHz, 433 MHz, 868 MHz (Europe) and 915 MHz (North 

America). LoRa enables very-long-range transmissions (above 10 km in rural areas) with low batter. 

LoRaWAN defines the communication protocol and system architecture for the network, while the LoRa 

physical layer enables the long-range communication link. LoRaWAN is also responsible for managing the 

communication frequencies, data rate, and power for all devices. LoRa and LoRaWAN permit inexpensive, 

long-range connectivity for the Internet of Things (IoT) devices in rural, remote and offshore industries. 

Typical uses of LoRa products can be found in the following industries: mining, natural resource management, 

renewable energy, transcontinental logistics, and supply chain management. Fleet Space Technologies1  uses 

LoRaWAN to provide massive connectivity to IoT sensors and devices in rural, remote and offshore areas. 

2.7.3.2 Sigfox 

An alternative long-range technology is Sigfox, which in terms of range comes between Wi-Fi and cellular. It 

uses the ISM bands, which are free to use without the need to acquire licenses, to transmit data over a very 

narrow spectrum to and from connected objects. The idea for Sigfox is that for many M2M applications that 

run on a small battery and only require low levels of data transfer, then Wi-Fi’s range is too short while 
cellular is too expensive and also consumes too much power. Sigfox uses a technology called Ultra Narrow 

Band (UNB) and is only designed to handle low data-transfer speeds of 0,01 to 1 kbps. It consumes only 50 

microwatts compared to 5000 microwatts for cellular communication or can deliver a typical stand-by time 

20 years with a 2.5Ah battery while it is only 0.2 years for cellular.  

                                                           
1 https://www.fleet.space/ 

https://www.fleet.space/
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Already deployed in tens of thousands of connected objects, the network is currently being rolled out in 

major cities across Europe. The network offers a robust, power-efficient and scalable network that can 

communicate with millions of battery-operated devices across areas of several square kilometres, making it 

suitable for various M2M applications that are expected to include smart meters, patient monitors, security 

devices, street lighting and environmental sensors.  

2.7.3.3 Weightless 

Weightless is a proposed proprietary open wireless technology standard for exchanging data between a base 

station and thousands of end user devices around it (using wavelength radio transmissions in unoccupied TV 

transmission channels) with high levels of security. As of 2018 weightless devices are operating in license-

exempt sub-GHz frequency bands (e.g. 138 MHz, 433 MHz, 470 MHz, 780 MHz, 868MHz, 915 MHz, 923 MHz).  

The defining characteristics of Weightless are the following: 100% bidirectional, fully acknowledged 

communication for reliability; optimized for a large number of low-complexity end devices with 

asynchronous uplink-dominated communication with short payload sizes (typically < 48 bytes); optimized for 

ultra-low-power consumption (at the expense of latency and throughput compared to cellular technologies). 

The weightless standard data rates vary from 0.625kbps to 100kbps. Typical End Device transmit power of 

14dBm (up to 30dBm) while the Base Station transmit power of 27dBm (up to 30dBm). 

A typical Weightless network is composed of the following elements: 

1. End Devices (ED): the user nodes in the network which are of low-complexity, the low-cost. 

2. Base Stations (BS): the central node in each cell, with which all EDs communicate via a star topology. 

3. Base Station Network (BSN): interconnects all Base Stations of a single network to manage the radio 

resource allocation and scheduling across the network, and handle authentication, roaming and 

scheduling. 

2.8 Log files 

Log files also referred to as logs, are records of events concerning the execution of an application, the state 

of a system or device, and the actions of a network and its users [34]. They can be combined to construct a 

complete picture of a specific security event, but system administrators and automated systems should be 

cautious about the integrity and trustworthiness of the logged information. 

The logging process may present issues with: log management and security, log content inconsistencies (e.g. 

timestamp inconsistencies) making the combination of logs from different sources difficult, and log file 

format inconsistencies. 

The log management process according to NIST [84] consists of three phases: 

1. Log generation includes management of monitoring nodes and the collection of log files from 

network devices. 

2. Log analysis and storage includes the transmission, storage and analysis of the log files collected by 

the first phase. Log analysis includes the log file parsing process, log normalization, event filtering, 

event correlation and event aggregation. Log storage includes the log rotation process along with log 

archival and integrity checking. 

3. Log monitoring includes the generation of alerts and reports about significant events detected by 

the second phase. 

According to NIST [84], three log file types are of interest in the context of computer security: 

1. Security software logs, containing security-related information; they are usually generated by 

security-focused applications, such as firewalls, intrusion detection or prevention systems, 

authentication servers etc. 
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2. Operating system logs, containing general usage information about the state and actions performed 

by the operating system and its users. 

3. Application logs, containing general usage information about the execution of a specific application. 

 

More specifically, security software logs are generated by: 

• Antimalware software: recording malware detections, malware removals, file quarantines, 

signature/software updates and information about malware scans. 

• Intrusion detection and prevention systems (IDS and IPS respectively): recording detected attacks, 

suspicious behaviour and mitigation actions performed. 

• Vulnerability management software (e.g. vulnerability scanners): recording the patch installation 

history and the vulnerability status of each managed host. 

• Remote access software (e.g. VPNs) and authentication servers: recording user access logs along with 

any successful and failed authentication attempts. Note that operating systems generate similar log 

files/log lines, recording both local and remote authentication attempts and their results. 

• Web proxies: recording all URLs accessed by its users and (in some cases) cached files. 

• Routers and firewalls: recording permitted/blocked traffic and connection attempts along with 

general information about the handled traffic. 

Operating system logs contain two types of information: 

• System events: recording failed events and some significant successful events; events can also be 

recorded as set by the system administrator. 

• Audit records: recording successful and failed authentication attempts, account and security policy 

changes and use of privileges by its users. 

Application logs contain: 

• Client requests and server responses: recording event sequences and their outcomes from which 

the usage of an application can be monitored. 

• Account information: recording successful and failed authentication attempts, account and security 

policy changes and use of privileges by its users. 

Usage information: recording the number and size of actions performed by the application, 

allowing anomaly detection to be performed. 

• Application events: recording general application events, such as application shutdown, failure 

events and configuration changes. 

The detail of information put in log files may vary, depending on the application and the configuration by the 

system administrator. Logging may be minimal, containing only the basic information about the logged event 

(timestamp, type of event, involved user), whereas on the other extreme detailed logging can include all 

parameters passed to the request, the full result body returned and possibly intermediate activities 

performed for serving the request. Detailed logging eases the analysis of malfunctions and security events. 

However it poses two major concerns: (a) it constitutes a threat for the user privacy, since personal data of 

the user are recorded in permanent storage and can be accessed/processed by system administrators and 

security officers authorized to view the log files and (b) in case of a breach, intruders that gain access to the 

log file will have at their disposal all recorded user personal data (sometimes including passwords) as well as 

detailed information about the system operation. 

Regarding the storage of log files, two options can be considered: 
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1. Store the log files on the device’s filesystem. This is possible for devices having adequate 

(considering the amount of log data to be maintained envisioned) storage space. This method is 

highly efficient, since persistent storage access costs are typically small, and can allow (storage space 

permitting) the maintenance of extensive log data. System administrators and security staff will be 

able to access the log files by remotely logging onto the device (e.g. via ssh) or by offloading the log 

files onto other servers -using, e.g. FTP/SFTP) and processing the files there. Four major 

considerations, however, are associated with this approach: firstly, an intruder that has successfully 

launched an attack against the device may have in many cases acquired adequate privileges to 

tamper with the log file and destroy or counterfeit evidence that will have been stored therein. 

Secondly, the log files are dispersed across devices and thus the potential to correlate information 

among log files to identify distributed attacks (e.g. network service enumeration or attempting a 

particular exploit across all web servers of the network) is substantially limited. Moreover, thirdly, 

IoT devices, being limited in many cases in terms of memory and processing resources [34], [89], may 

not have the potential to implement efficient alerting procedures in the case that a particular event 

is recorded in the log file. Moreover, fourthly, if a device malfunctions or is retired, log files on its 

persistent store are rendered unavailable. 

2. Store the log files in a cloud service. RFC 3164 [93] defines the legacy protocol for communication 

between a device that generates log files and a collector device which is responsible for log storage, 

to transmit and receiving, correspondingly, log information. RFC 5424 [60] is the new and updated 

version. Both RFCs allow for using either the UDP or the TCP transport-layer protocol, with the use 

of UDP being predominant in the context of LANs, for efficiency purposes; additionally, both RFCs 

allow for specification of intermediate relays, which intervene between the log source and the log 

collector, arranging for log messages to be transferred on a hop-to-hop basis. Nodes also have the 

capability to act as both relays and collectors: a typical usage scenario would be for a node to store 

all messagees and forward important messages to an upstream collector, where they can be assigned 

secure timestamps or digitally signed to be able to be used as evidence. Finally, RFC 5424 

accommodates both structured and non-structured log information, with structured information 

easing the task of log file analysis and aggregation. The existence or not of structure within the log 

messages is primarily dependent on the application, not the log server, however special filtering 

mechanisms can be employed either by collectors or relays to inject structure into otherwise 

unstructured messages, provided that some methods are available for recognizing individual 

elements (e.g. applications, timestamps, users) in the unstructured message. 

Storing the log files on a cloud server has a number of advantages: firstly, it deprives intruders of the 

potential to tamper with log files, after a successful breach: while in such an event, an intruder can 

inhibit transmission of further log data, traces of his/her activity up to the point of the breach success 

will have been transmitted to the cloud server and will have been securely stored there; furthermore, 

it ensures availability of log data regardless of the device state (e.g. malfunctioning or retired). 

Secondly, it allows the exploitation of the ample storage capacities provided by server machines; 

thirdly, it facilitates the usage of sophisticated log analysers which can identify events of high 

importance and also correlate events; fourthly, cloud servers can arrange for securely timestamping, 

securely hashing, digitally signing, or otherwise arranging for the attestation of the validity of log 

timestamps and content, so that they can be used as forensic evidence; and finally, elaborate alerting 

mechanisms can be employed. 

The cloud storage option, on the other hand, has three potential drawbacks: firstly, it entails a 

communication cost, which can range from moderate to high, depending on the amount of log data 

transmitted from the source machines to the collectors. Provided that adequate configuration 

options are implemented on the IoT device’s logging subsystem, this issue can be tackled by sending 
to the cloud server the indispensable/most important log entries and keeping on the device storage 

the detailed entries. Then, if the cloud server detects traces of misuse, it can launch a log transfer 

process to obtain the detailed logs from the device. 
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Secondly, log data transmitted may be eavesdropped or tampered with at transmission time. As a 

defence measure against transmission-time eavesdropping and tampering, modern log system 

implementations such as rsyslog implement TLS encryption for log data transfer [144]; it has to be 

noted though that log encryption may not be implemented by all log source IoT devices, since it is 

not a part of neither RFC 3164 nor RFC 5424. It has to be noted that in some cases, transmitted log 

data may convey sensitive personal information, e.g. in the case that a smart watch monitoring the 

heart rate issues an alert; in these cases, the encryption during transport is indispensable. 

The third issue is associated with user privacy: in the cloud storage scheme log lines may be 

(depending on the specification of the collector device) stored on remote servers, transcending 

network boundaries and/or falling under different access rights and jurisdictions. Therefore, the log 

maintenance configurations chosen should be tailored to preserve user privacy, while also enabling 

log collectors to perform causal analysis and event correlation. Selective transmission of events, 

execution of anonymization procedures before log data transmission or encryption techniques for 

sensitive log data are three indicative techniques that can be used to that effect. These procedures 

should be carried out while the log data is still in the data owner’s control and jurisdiction, e.g. within 
a smart home, the relevant procedures could be performed in the Smart Gateway, which could be 

configured as a relay and/or a collector. Opting for private cloud services for storing log data 

alleviates privacy issues to a great extent. 

Overall, the advantages of storing log files on a cloud server considerably outweigh the corresponding 

disadvantages. Hence this option is recommended by both industry/practitioners [129], [131], [40] and 

academia [182], [175] alike. 

2.9 Network profiling  

A network is simply a collection of computers or other hardware devices, i.e. IoT sensors and actuators that 

are connected, either physically or logically, using special hardware and software to allow them to exchange 

information and cooperate. Section 2.9.4 has already covered the communication protocols that dominate 

the IoT arena, and this section aims to elaborate on the networking element of computational activity 

profiling and its role in monitoring and protecting devices and the wider network. In the IoT every physical 

object becomes locatable, addressable and reachable in the virtual world. Privacy concerns for IoT devices 

are valid, especially as social media is increasingly incorporated into IoT services, i.e. Google Home and 

Facebook [90], and network profiling has a role to play in privacy preservation in IoT network profiling [17]. 

As more and more objects in the physical world are expected to connect to the Internet, the IoT is supposed 

to contain millions or billions of objects which will communicate with each other and with other entities (e.g., 

human beings). These objects not only include computers and laptops which already exist in traditional 

networks, but also physical devices such as home appliances, vehicles, etc. The heterogeneity of devices and 

technologies that are used for providing IoT services has had a great impact on the interoperability and 

management of IoT devices. Many devices have constrained resources and limited computational capabilities 

and are deployed in an open environment (e.g., street lights), which makes them prone to being controlled 

or destroyed by malicious attacks. With its inherent complexity and heterogeneous structure, the IoT is facing 

numerous threats and attacks which will negatively affect its normal functionality. Thus, protecting the 

security of the IoT is a difficult yet important task. Within the approach of Cyber-Trust, this protection has 

been divided into on-device protection via a device agent and network protection based on an enhanced 

gateway and associated network profiling. A high-level view of the complexity of the IoT network 

environment is shown below in Figure 2.5. 
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Figure 2.5: The IoT Network Environment [10] 

Network systems need to be able to detect malicious activity and classify it to enable corrective actions to be 

taken. Accuracy and speed are critical factors in enabling effective threat classification and quarantining in 

order to prevent the propagation of threat vectors such as malware beyond an infected device into the local 

or wider network. For example, a botnet upon infecting a smart device, such as a home surveillance system, 

by compromising the software binary with an unknown (until now) malicious bot was installed [10] will listen 

for commands through HTTP and HTTPS and can execute three different types of attacks. These attacks are: 

• DDoS; 

• Eavesdropping; 

• Spamming.  

The bot is trying to replicate itself over the network using telnet/FTP/SSH default logins; however, it can also 

update itself from a C & C server with exploits that can attack more devices with firmware vulnerabilities. 

The details of such an attack are detailed in Cyber-Trust Document D2.3: Use Case Scenarios, however the 

relevant elements here are that the botnet’s behaviour will create a unique network traffic and port usage 
signature that can be detected against the background of normal traffic and port usage provided the means 

by which detection occurs has the computational power and algorithms to conduct fast, accurate traffic flow 

analysis. Programming elements such as multi-threading and hardware elements such as multicore CPUs (or 

even specialist FPGAs) are all necessary devices by which to exploit existing capabilities to enhance the 

gateway and conduct localised traffic analysis, which can be further enhanced by GPUs [174], a concept which 

will be explored in the Cyber-Trust network profiling capability within the cloud. 

2.9.1 Network Fundamentals 

By way of introduction, it is necessary to highlight the details of the TCP/IP protocol stack, as we need to 

understand what it is we are profiling. The first sentence of this section provided a seemingly simplistic 

sentence to describe a network. Although simplistic it is accurate, and the enabler for this seeming simplicity 

is the TCP/IP protocol suite. Figure 2.7 below provides a simple overview of the protocol, and to enable less 

technical readers to understand its functionality a comparison with the introductory OSI Reference Model is 

provided. 
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Figure 2.6: The TCP/IP Protocol Suite [174] 

As is shown in Figure 2.6 above, network protocols are developed in layers, with each layer assigned 

“responsibility” for an aspect of the communication task. Ergo a protocol suite such as TCP/IP is simply a 

combination of layers. The TCP/IP layers are as follows, with informal TCP/IP IoT-capable elements in Blue, 

moving from the bottom up (with protocol details being discussed in more depth throughout the rest 

subsection of Section 4.9): 

• Link Layer (Network Driver and Interface (NIC) card): This layer handles the hardware requirements 

and details for interfacing with the cable or wireless network. 

• Network (IP, ICMP, IGMP, 6LowWPAN): This layer handles the movement of packets around the 

network. Routing packets take place at this layer, as an example. Internet Protocol (IP), Internet 

Control Message Protocol (ICMP) and Internet Group Management Protocol (IGMP) are the network 

layer in the TCP/IP stack, but for an IoT network, it is necessary if not proper to place the 6LowWPAN 

(IPv6 over Low-Power Wireless Personal Area Networks) at this layer. 

• Transport (TCP, UDP): The transport layer provides the data flow between hosts for consumption by 

the application layer. Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are 

radically different protocols within the TCP/IP protocol suite. UDP is the primary IoT protocol at this 

layer. TCP is a reliable, addressable protocol providing bi-directional byte-stream communication, 

with reliability assured by the transport layer (ignored by the application layer) while UDP is an 

unreliable unaddressed broadcast providing multiplexing, with reliability assured by the application 

be layer. UDP delivery is as that of IP, asynchronous and unreliable. The Real-Time Transport Protocol 

(RTP) sits within UDP for delivering VoIP, media streaming and video-teleconferencing. Both TCP and 

UDP produce a set of {1....65535} ports. 

• Application (Telnet, FTP, SMTP, SNMP, CoAP): The application layer handles the details of a 

particular application. Some examples are File Transfer Protocol (FTP), Telnet, Simple Mail Transfer 

Protocol (SMTP) and more recently the Constrained Application Protocol (CoAP) designed to enable 

loT and Machine-to-Machine devices within low power lossy networks to communicate via RESTful 

services. 

2.9.2 Profiling the Network 

Network Analysis and Profiling can be fixed on six key capability areas, within open source and commercial 

software operate to provide network operators with the tools necessary to understand, control and 

management the networks under their control, i.e. profile the network. The six principle areas are, including 

examples of applications are summarised in Table 2.2. 
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Table 2.2: The six principle areas are, including examples of applications. 

Areas Examples of applications 

1 
Network Spoofing and Redirection 

A. DNSMasq; 

B. Ettercap. 

2 
Executable Reverse Engineering 

A. Java Decompiler; 

B. .NET Reflector; 

C. IDA Pro; 

D. Hopper; 

E. ILSpy. 

3 
Web App Testing 

A. Mitmproxy; 

B. Zed Attack Proxy; 

C. Burp Suite. 

4 
Active Network Capture and Analysis 

A. Canape; 

B. Canape Core; 

C. Mallory. 

5 Passive Network Protocol Capture and 

Analysis 

A. Wireshark; 

B. SiLK 

C. LibPCAP; 

D. TCPDump; 

E. MS Message Analyser 

6 Fuzzing, Packet Execution, Vulnerability 

Exploitation Frameworks 

A. American Fuzzy Lop (AFL); 

B. Kali Linux; 

C. Metasploit; 

D. Scapy; 

E. Sully 

 

For this document and this section in particular, the focus will be on the passive network protocol tools, as 

these align to the Cyber-Trust capabilities being discussed within this document and being implemented 

within the project. The tool used for the passive capture and analysis of network traffic flow will be the 

System-for-internet-Level-Knowledge (SiLK) toolset [67]. While proprietary toolsets such as NetFlow (Cisco) 

and ntopng (ntop) offer cut-down solutions to network monitoring, full functionality is retained for their 

respective commercial offerings, i.e. NetFlow via Cisco routers. SiLK offers full functionality as an open-source 

capability and delivers a powerful network analyst toolkit [85] centered on network flow. An example 

workflow is shown below in Figure 2.7: Example SiLK workflow. 
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Figure 2.7: Example of SiLK Workflow [85] 

By focusing on flow analysis as the primary method of detecting, profiling and protecting the Cyber-Trust 

network, we can maintain a computationally lightweight presence on the gateway while retaining separate 

packet capture and deep packet inspection (DPI) capabilities. By further extension, and linking to the SDN 

approach mentioned previously, network profiling can take a flow approach to trusted devices, and a deeper 

packet analytical approach to less trusted devices or devices demonstrating anomalous network behaviour 

via integration of trust metrics. 

2.9.3 Passive Network Protocol Capture and Analysis 

A network profile is an inventory of all the assets on a network and their associated purpose. It is a log of all 

network activity, rather than a recording of all packets, with packet metadata stored but not the contents, 

which allows flowing analysis to enhance privacy for network users. The metadata consists of the following 

types of information (not exhaustive): 

• Source address, destination address 

• Source port, destination port (Internet Control Message Protocol [ICMP] type/code) 

• IP [transport] protocol 

• bytes, packets in the flow 

• Accumulated TCP flags (all packets, first packet) 

• Start time, duration (milliseconds) 

• End time (derived) 

• Sensor identity 

• Flow termination conditions 

• Application-layer protocol 

As the profile changes over time, especially within a dynamic environment such as IoT networks, network 

operators and defenders can monitor for emerging concerns, i.e. within the context of Cyber-Trust, this could 

be a new device with unpatched firmware. This, in turn, can lead to policy changes and reallocation of 

network resources. The network profiling process, as followed by the Cyber-Trust project, the general steps 

for network profiling are as follows:  

• Gather available network information; 

• Select an initial data set 

• Identify the active address space, 

• Catalogue common services; 

• Catalogue other services; 

• Catalogue leftover assets; 

• Report on findings.  

These steps are a cyclical process in order to ensure changing network activity is captured and catalogued. 

To enable this, Cyber-Trust will employ sensors to capture network services or packets for 

anomalous/untrusted devices as discussed previously) shown below in Figure 2.8: Sensor Functionality. 
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Figure 2.8. Sensor Functionality [85] 

For the Cyber-Trust network monitoring capability, a two-step approach is required in order to encompass 

the limitations of local, consumer-grade networking items when conducting activities as described above, 

such as flow monitoring. As shown in Figure 2.9: High-Level Cyber-Trust Network Monitoring Approach, the 

residential gateway will be enhanced with an ability that will, amongst other activities such as Intrusion 

Prevention, provide a MUD-driven network monitoring capability. 

 

Figure 2.9: High-Level Cyber-Trust Network Monitoring Approach 

As discussed, port, payload and behaviour-based classification of network traffic are all considered to be part 

of the Cyber-Trust solution. However, with a hard constraint of a residential gateway and its sparse resources, 

even when enhanced with a Rasberry-Pi-like device (1.4GHz 64-bit quad-core processor), it is necessary to 

implement a two-stage approach to network operations. At the edge, the residential gateway can be treated 

as an inference-layer, running flow-based behavioural algorithms, including a machine learning-based 

anomaly-driven IPS, to enable timely, accurate network profiling and anomaly detection with small resource 

availability. This is backed by an offsite, or cloud-based, an analytical capability that has the computational 

resources to conduct DPI, packet inspection and malware analysis and to provide post-analysis rule-set, 

signature and behavioural updates to the residential gateway.  

2.9.4 Protocols 

The primary network communication protocols are ARP, IPv4, IPv6, ICMP and ICMPv6. In addition to these 

specific IoT protocols have been developed to enable low-power, low-resource devices to communicate 

effectively. These are 6LoWPAN (which is IPv6 over Low-Power Wireless Personal Area Networks specified in 

RFCs 4944, 6282, 6775 and can be seen as complementary to IPv6 over Bluetooth in RFC 7668 as described 

in Section 3.7) and CoAP (Constrained Application Protocol specified in RFCs 7252 and 7959). All these 

protocols will be discussed in this section. 
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2.9.4.1 Internet Protocol (IP) 

The Internet Protocol has two versions in use, v4 and v6, both of which will be discussed here. IPv4 is the 

older and more common of the two versions and assigns unique 32-bit addresses to identify devices 

connected to a network. Any device that wishes to connect to the internet will require the capability to have 

an IP address, which is provided by the IP protocol (working together with the distributed Domain Name 

System, DNS, to assign textual names to these addresses). As the number of networked devices grew and the 

limit on the number of addressable IPv4 devices being ~4.3 billion devices, the IPv6 specification was 

developed. IoT devices use IPv6, and the specifications made several improvements on IPv4 such as a larger 

address space using 128-bit addressing (which creates an addressable space of a trillion trillion trillion, or 

undecillion) which supports the rapid growth in network devices as seen with the development of the IoT 

concept. Figure 2.10 below highlights the differences between IPv4 and IPv6. The use of IPv6 for the IoT is 

more than just about addressable space, one of the workarounds for the IPv4 address problem was to NAT 

networks (create local networks that all shared a single public IP but without a public IP themselves) which 

isn’t ideal for IoT devices which often need to be accessed from the internet.  

 

Figure 2.10: IPv4 and IPv6 Differences 

 

As IPv6 is being discussed, it is appropriate to include 6LowWPAN, which is a compressed version of IPv6. 

Developers of IoT devices have focused on IPv6 and 6LowWPAN in order to support low-power devices, which 

when used together with the Constrained Application Protocol (CoAP) protocol enable devices such as 

embedded computers which have very low computational and memory resources, to be networked using 

the IPv6 protocol. Stateless Address Auto-Configuration (SLAAC) also provides an auto-configuration 

capability that means there is no need to configure IP addresses for end systems, even Dynamic Host 

Configuration Protocol (DHCP), ergo devices can communicate on detection allowing for a ‘plug and play’ 
approach that suits IoT devices. IPv6 also supports multicast more effectively and securely than IPv4, 

providing several multicast addresses for devices on the WAN, as well as any cast (unique to Ipv6) which 

provides for more robust allocation within IoT networks. The iot6.eu project is one initiative supporting the 

development of IoT6, the IPv6-aligned IoT. 

2.9.4.2 Address Resolution Protocol (ARP) 

Logical and physical addresses are used for communication on a network. Logical addresses allow for 

communication amongst multiple networks and indirectly connected devices, whereas physical addresses 

facilitate communication on a single network segment for devices directly connected via a switch. It would 

be too simplistic to assume IoT devices within a local network like a smart home fit within physical address 

constraints, as whilst the may have some perceived local network functionality, i.e. a thermostat 
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communicating with a phone app, the likelihood is that smart home and industrial IoT user software is more 

likely to consume data from a cloud-based service provider that is communicating with the device directly. 

Logical and physical addressing work together to enable data links to operate with the TCP/IP protocol suite 

using ARP to resolve an IP address to a MAC address (the address used in switch Content Addressable 

Memory (CAM) tables to map devices on its network). An ARP request broadcasts a requirement to connect 

to another device, about which only the IP address is known, and the device responds with an ARP response 

containing the required MAC address. In summary, ARP provides a mapping between IP addresses (which are 

only understood by the TCP/IP protocol suite) and a data link. 

 

Figure 2.11: The ARP Packet Structure 

2.9.4.3 Internet Control Message Protocol (ICMP) 

ICMP is the Internet Control Message Protocol which is the utility protocol of TCP/IP responsible for providing 

information about device availability, TCP/IP network routes and forms a foundation protocol for enabling 

troubleshooting activities to occur. It relied on IP, and performs activities such as ping (which tests for 

connectivity to a device) and traceroute (which identifies the path from one device to another).    

2.9.5 Ports 

Ports serve as the interface between a computing device and other computing devices. Transport layer 

protocols, such as TCP and UDP, transfer data using protocol data units (PDUs). For TCP, the PDU is a segment, 

and for UDP a datagram. Both protocols use a header field for recording the source and destination port 

number. A port number is a 16-bit unsigned integer, ranging from 0 to 65535. For TCP, port number 0 is 

reserved and cannot be used, while for UDP, the source port is optional and a value of zero means no port. 

A process associates its input or output channels via an Internet socket, which is a type of file descriptor, with 

a transport protocol, an IP address, and a port number. This is known as binding and enables the process to 

send and receive data via the network.  

The operating system's networking software has the task of transmitting outgoing data from all application 

ports onto the network, and forwarding arriving network packets to processes by matching the packet's IP 

address and port number. 

Common software activities and hardware assign common ports examples of which can be seen below in 

Figure 2.13. 

 

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwis0_i6gtXgAhWmxYUKHdJyDjoQFjAAegQICxAB&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FInternet_Control_Message_Protocol&usg=AOvVaw1ubYOkzg5tqyt6KBJlW4RC
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwis0_i6gtXgAhWmxYUKHdJyDjoQFjAAegQICxAB&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FInternet_Control_Message_Protocol&usg=AOvVaw1ubYOkzg5tqyt6KBJlW4RC
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Figure 2.12: Common TCP/UDP Ports [63] 

 

As the above Figure 2.12: Common TCP/UDP Ports shows, within any profile analysis of network traffic there 

is a multitude of ports in use at any one time for everyday tasks and device-orientated tasks. Unfortunately, 

these do not mean that these standard ports can be ignored, as malware can utilise a device’s assigned port 
for malicious activity, i.e. Mirai which is why the ability to detect anomalous network behaviour is critical. 

2.9.6 Volume Traffic & Muddy Filtering 

As the preceding sections have shown, networks are areas of intensive traffic and analysis of them is no easy 

task, indeed volume traffic could also be labelled big data in terms of its volume, complexity and variety, 

especially within the IoT environment (such as a smart home) where a plethora of devices are networked 

and communicating, often without any visibility to the user, i.e. smart fridges, lights and thermostats given 

the common lack of a UI within the IoT device taxonomy. This complexity has the potential to increase 

exponentially as more devices come online, and an example profile of a Smart Home (which is the focus of 

the Cyber-Trust project at this stage) is shown in Figure 2.13: An example Smart Home and its network edge 

below, where the network edge (the smart devices) are detailed and which can be interpreted at the network 

level as a closed group of NICs with software and hardware-driven port assignments. 
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Figure 2.13: An example Smart Home and its network edge [18] 

Filtering is the key to be able to tackle this volume and complexity, where traffic can be analysed based on 

elements such as destination IP, or port numbers or sliced according to device type. Software-Defined 

Networking, or SDN, will be part of the network solution to managing this volume and to support the network 

profiling though targeted packet management [158], [63][18], falls outside the scoop of this report. However 

as discussed previously, computational overhead and accurate analytics are also key to effective profiling and 

anomaly detection. Here, the Cyber-Trust Gateway Service will use the Manufacturer Usage Description, or 

MUD, to deliver device-focused network profiling to support accurate feature-set development for use in 

statistical-learning based anomaly detection. To place MUD in the correct context within the network, Figure 

2.14 below details its use within the Cyber-Trust project. 

 

Figure 2.14: The Cyber-Trust MUD environment 
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As discussed previously, IoT devices are increasingly leveraged by cyber-attacks, either in actuality or by 

implication, as the number of devices proliferates and the security mechanisms for these devices remains 

ad-hoc or non-existent. The challenge with IoT devices is that security protocols for internet-connected 

devices were designs for computationally-capable edge devices with non-heterogonous architectures, i.e. a 

desktop computer or mainframe. The IoT introduces a more complex security paradigm insofar as the edge 

becomes a collection of heterogonous low-power low-resource devices utilising local and cloud-based 

resources in order to deliver a specific function (or a very limited set of functions). As such, profiling has both 

local network and gateway-to-internet behaviour to consider.  

 

Figure 2.15: Results of MUD analysis on IoT devices [65] 

The Internet Engineering Task Force (IETF) MUD specification is still under development, and so not 

implemented by manufacturers, a shortfall that has been overcome by researchers and whose open-source 

software will be used as part of the network profiling for Cyber-Trust. MUD enables devices to signal to the 

network what access and functionality they require in order to function, and provides an enforceable policy 

mechanism for enhancing the network security of IoT devices.  At its core, MUD requires manufacturers to 

provide a behavioural profile of their device(s), i.e. an IP camera may need to use DNS and DHCP on the local 

network and communicate with a cloud-based controller and NTP servers. This, in turn, enables network 

controllers to auto-develop a device-specific access control list (ACL), placing restrictions on IoT devices and 

reducing the potential attack surface on the network while providing a baseline security model for the 

attached IoT devices themselves [65].   

Consumer IoT devices expose services to local hosts and use services provided by remote cloud servers. As 

shown above in the Sankey diagram in Figure 2.16: Results of MUD analysis on IoT devices, [65] the TPLink 

Camera and Amazon Echo have network profiles that consist of local and internet connections. Traffic 

profiling using MUD via the MUDgee application[65] (which utilises IoT traffic flow according to rules set by 

[88]) shows that IoT devices, especially IP cameras, use the Session Traversal Utilities NAT (STUN) protocol to 

check a user can stream video from the camera over the internet, which means that profiling and network 

management has to allow all UDP traffic to and from internet servers as the STUN protocol often requires 

the client device to connect to different IP addresses or port numbers. This general rule means that UDP is a 

risk-vector for malicious infection or activities that profiling and anomaly detection need to be attuned to, 

given a general ‘block UDP’ rule would render common user IoT devices which stream video useless, which 
would make Cyber-Trust unworkable.  

IP cameras communicate with many remote servers operating on the same port, which means that remote 

traffic to and from any IP address on that specific port number must be allowed [65]. This creates a 

challenging security situation in that an IP camera could communicate with a botnet C&C server using the 

same port as a benign service server. Without a rule to block common IP addresses, i.e. a blacklist, for IoT 

ports it means that it is unlikely that IoT devices such as IP cameras can have the network trust level that 

means the flow is the only means by which traffic to and from such devices is monitored. At this stage, as 

shown in Figure 2.14: High-Level Cyber-Trust Network Monitoring Approach, it is likely that such devices will 

be managed at a lower trust level and subjected to packet analysis and DPI.  
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MUD analysis provides how IoT devices and their network behaviour can be understood and thus managed 

from a security perspective. A device can exchange DNS queries/responses with the local gateway, 

communicate with a single domain name utilising a single port. Such behaviour can be classified as static and 

allows the device to be locked to a specific set of flow rules [65]. However, other devices can have a 

transparent local profile, such as the TP-Link IP camera shown in Figure 2.16: Results of MUD analysis on IoT 

devices [65], allowing for a clear set of access controls, but over the internet and utilising its STUN server it 

accesses an arbitrary range of IP addresses whose provenance is unknown, however, behavioural profiling 

can still be applied even if a lighter set of access controls is required [116].  

Another step up in complexity is represented by the Amazon Echo, again shown in Figure 2.15: Results of 

MUD analysis on IoT devices [65], are devices with complex and dynamic functionality using custom recipes, 

which thwarts behavioural profiling and so arguably creates a case for continual packet analysis and further 

deep packet inspection based on thrust profiles for the device itself, I.e. firmware patching etc, as shown at 

Figure 2.14: High-Level Cyber-Trust Network Monitoring Approach. What Cyber-Trust cannot do is drive 

security from the provenance of the manufacturer, as Amazon is as much at risk of malicious activities as is 

Huawei, Belkin or TP-Link [116]. 
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3. State of the art in malware detection and mitigation 

3.1 Introduction 

There are numerous recent examples of cyber-attacks exploiting lightweight IoT endpoint devices to perform 

distributed denial-of-service (DDoS) attacks of unprecedented scales, spy on people in their office/homes, or 

hijack communication links to deliver full control of remotely controlled objects to cyber-criminals. The 

availability of massive IoT botnets-for-hire is expected to lead to a significant increase of cyber-security 

incidents targeting at critical information infrastructures (CIIs), which provide vital functions that our 

societies depend upon, and should be considered as high risks. Their formation is facilitated by the security 

problems arising from embedded devices and legacy hardware, whose flawed design or poor configuration 

allows cyber-criminals to compromise them. This is easily achieved using known (even years old) 

vulnerabilities, since there are often no (efficient) means to patch those devices for preventing any further 

exploitation. However, the cases where previously unknown (called zero-day) vulnerabilities are employed 

to compromise connected systems have grown noticeably, as they are found on black markets that have 

evolved in the darknet. Cyber-Trust ambition is to address the emerging cyber-security challenges and 

prevent vulnerable IoT devices from being used as a vehicle to attack CIIs as well as other infrastructures. In 

order the above to achieved we need to see the landscape of attacks and review the state-of-the-art in order 

to come into conclusions that will be implemented in the WP6. Thus, the rest of this chapter provides a 

thorough analysis and reviews of the areas malware detection and mitigation. 

3.2 Malware 

There are numerous recent examples of cyber-attacks exploiting lightweight IoT endpoint devices to perform 

distributed denial-of-service (DDoS) attacks of unprecedented scales, spy on people in their office/homes, or 

hijack communication links to deliver full control of remotely controlled objects to cyber-criminals. The 

availability of massive IoT botnets-for-hire is expected to lead to a significant increase of cyber-security 

incidents targeting at critical information infrastructures (CIIs), which provide vital functions that our 

societies depend upon, and should be considered as global risks. Their formation is facilitated by the security 

problems arising from embedded devices and legacy hardware, whose flawed design or poor configuration 

allows cyber-criminals to compromise them. This is easily achieved using known (even years old) 

vulnerabilities, since there are often no (efficient) means to patch those devices for preventing any further 

exploitation. However, the cases where previously unknown (called zero-day) vulnerabilities are employed 

to compromise connected systems have grown noticeably, as they are found on black markets that have 

Term malware is created by combining two words ‘malicious’ follows the Standard English definition which 
implies the actions characterized by malice, and the word ‘software’, which is a combination of programs to 
execute a specific task. Intrinsically malware is a malicious piece of software design by malware authors with 

the intention to destroy, destruct and damage the normal functionality of Information systems. It has 

become the most disastrous and pernicious cyberweapon like never before and with the passage of the time, 

there is a significant increase in the growth of malware and its complexity. Nowadays there is a drastic 

increase in the production of malware variants, according to McAfee 2018 reported that they had seen an 

exponential increase in the power shell malware which grows by 267% in 2017 [112], Panda labs quoted that 

200,000 new malware samples were spotted per day in 2014 [127] and Internet security report of Symantec 

reports that 350 million malware variants were developed in 2016 [72]. 



 D6.1 State-of-the-art on profiling, detection and mitigation 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 43 

 

 

Figure 3.1: Malware trend (Source: [112]) 

The mounting malware proliferation is not just damaging the information system but also challenging the 

critical networked infrastructure of the states all over the world. Currently, it has become one of the most 

heinous threats posed to the state’s security structure and if a threat enters in the system, the security of 

hundreds of computers is compromised [170]. According to an INFOSEC report, these attacks can bring 

catastrophic destruction to the whole population of a state. Previously, malware attacks such as Wannacry 

ransomware and Petiya have disrupted the critical infrastructures of numerous states in 2017, so the current 

wave of malware necessitates rapid, creative and inclusive solutions. With the increasing popularity of the 

internet and rapid development of the information system, malware has become more complex and 

complicated and has the very first virus sample to complicated worms, and pernicious Trojans to notorious 

rootkits and nowadays to ransomware like CryptoLocker, WannaCry, NotPetya, etc. 

Malware can be broadly classified into the following categories depending on their working and the 

mechanism of propagation. 

3.3 Classification of Malware 

3.3.1 Viruses 

The best known and one of the oldest types of malware is a virus and word ‘virus’ itself is Latin which is used 

for “poison”, and a term computer virus is derived from and analogous to a biological virus. As most of the 

viral infection is spread by a small shell containing genetic material when injects its nefarious contents into 

larger body cell of any human being it infects that specific area with it poison, in similar way computer Virus 

is a small program designed with harmful intent and possess the ability to poison/damage the computer, 

moreover possess the ability to replicate itself. In contrast to worms, viruses do not use network resources 

for their propagation and usually, it works by appending virus code to an executable file. Another difference 

between virus and worm is that a virus always requires some user interaction or intervention in order to 

spread itself, whereas in worm no user intervention is required, and it can spread automatically. A virus 

copies can penetrate into other machines through the network or by using different types of compromised 

media e.g. USB stick, floppy disks etc. one possible scenario to infect other users on the network is by 

infecting files hosted in a shared location on the network in order to compromise other systems. The virus 

usually comes with very specific and targeted binary executables files for e.g. portal executable which is the 

most common format for Windows, COM, exe files in MS-DOS, documents with compromised macros, 

malicious script files etc.   

In some occupational scenario, the virus is carried by worms as additional payloads or in another case; it has 

been observed that virus itself can include the functionality of backdoor or Trojan which compromise the 

valuable information and data on the target machine. The virus can be of different types e.g. an original copy 

of the virus is being modified to make new variants to produce metamorphic virus. The typical virus works in 
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a way that it adds itself to executable code of some other software so that malicious or viral code can be 

executed before the code of its infected host.  

There are three different ways that a virus can add itself to the host code. 

 

Figure 3.2: Ways that a virus can add itself to the host code  

3.3.2 Worms 

A worm is a type of malware that propagates independently via local area network or public internet by 

exploiting known and unknown vulnerabilities in software to damage a system [100]. It uses different 

networking system to replicate or propagate themselves for instance; some time by penetrating a remote 

system, sometime launch copies on target systems, in some cases through file-sharing(P2P), most commonly 

through networks by using email to compromise other system and may copy themselves by using file transfer 

protocols, or by IRC channels and WANs [100]. 

It is interesting to understand how worms penetrate the system. The most common path is the file form 

whereby worms are induced in file attachments and ICQ messages through P2P Networks. Besides these files 

attached worms, there are some file fewer worms as well. These file fewer worms penetrate in the system 

as network packets and immediately spread in the, RAM where the code execution takes place. There is a 

wide variety of method by which worms penetrate in the victim’s machine and execute the code. Most of 
the times it is the email which seeks the attention of victim to open that specific malicious email and 

eventually leaves the system vulnerable or even, sometimes, compromises its security. It is significant to note 

that unlike viruses, worms spread automatically. Viruses do not spread automatically rather an intervention 

by the user is ultimately required for the virus to accomplish its task whereas worms do not require such 

action by the user. Because of this fundamental difference between these two, the system infection caused 

by the email attachment or MS word document would fall in the category of a virus instead of a worm 

classification.   

In 2006, a graphic icon was used by Leap A. in the form of a JPG image. This was penetrated by using the 

iChat messenger client and latestpics.tgz was the name of the file used in this worm attack.  

3.3.3 Trojans 

The Trojan is the short name for the ‘Trojan Horse’, which has its links with the Greek mythology of Trojan 
War, in terms of its meaning. The story is based on a wooden horse, used for stealth, which Greek troops 

utilised for the city of Troy invasion. Relying on the same principle, in computing, a Trojan horse is a kind of 

malware which appears as something very useful and attractive to misrepresent the user for the sake of 

convincing the user to click on it and install it. Trojan seems to perform a completely different action which 

it actually performs i.e. malicious action which is not known to the victim. It aims to complete its task by 
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running the program secretly in a way that the user or administrator of that system is unable to shut it down 

or delete it. Most of the times, the Trojan horse’s payload is a backdoor which is used to infect the system. 
Sometimes, a Trojan which is called as the dropper is used to inject the worm in the local networks of the 

system. The Trojans perform numerous functions which are not known to the user of the system and are 

performed without the consent of administrator. These tasks include but are not limited to collecting specific 

data and then transferring it to the cybercriminals, sending spam emails, destroying the system’s data, using 
the system for criminal purposes and many other malicious functions [100].  

In general, Trojan is a type of malware that misleads the user and invites him to run a specific malicious 

program. This payload may disrupt the system immediately and delete important data or may cause any 

other disastrous consequences. A clear example of Trojan is presented here. According to ESET, in 2004, the 

first most Mac Trojan was Amphimix that was perceived as an MP3 file with an mp3 icon, whereas, in actual, 

as a result of clicking on it, a message was displayed, to play an audio file ‘wild laughter’.  

3.3.4 Bots  

The bot is another type of malware and the word used is coming from the short of Robot. Bot works on the 

automated principle; therefore, it usually has an active interaction with other networks. The collection of 

useful information is the fundamental task of bots while it also automatically communicates with other 

applications such as with any web interface or Instant Messaging. Bot software is useful for the operator in 

terms of providing access to the operator to control each system from far away or anywhere remotely. It also 

allows him to make a zombie army or botnet by controlling and gathering each system collectively in the 

form of a group. The benefit of forming such kind of zombies for attackers is that while launching attacks, 

they are able to conceal their original identities by using anonymous proxies with the help of utilising these 

Botnets or zombies [103].  

It is significant to note that a Botnet is a group of a large number of compromised systems all over the internet 

service. There are several ways which the attackers can use a botnet. Some of these include flood type 

attacks, attacks from far away or remote-control attacks and broad-based attacks to affect their particular 

targets. Contemporarily, the bots used are, usually, the combination of the other threats. In general terms, 

they have the qualities of other malware types. For instance; they have the ability to conceal and are unable 

to detect like viruses, they are able to penetrate like worms, they may solely launch an attack just like other 

tools and in addition to this, and they also have a unified command and control system. Plus, they have also 

been using backdoors to provide them access to other networks. It should also be noted that bots penetrate 

in other networks while remaining concealed and unnoticed. 

Attackers show an increasing interest on controlling our Smart Home devices, and recent examples like the 

Mirai botnet highlight this ambition. Mirai infects poorly protected internet devices by using telnet to find 

those that are still using their factory default username and password.   The effectiveness of Mirai is due to 

its ability to infect tens of thousands of these insecure devices and co-ordinate them to mount a DDOS attack 

against a chosen victim. It has been reported that Mirai attacks exceeded 1 Tbps—the largest on public 

record. 

3.3.5 Ransomware 

Ransomware is another type of malware in which victim data is encrypted by a hacker with his own key and 

remains in the same state until ransomware is being paid by the victim, usually hackers to pay money using 

cryptocurrency to keep them anonymous [99]. An example is quoted here from the year 2016. BitTorrent 

client Transmission’s official servers offered infected files. This kind of malware was noticed for the first time 
and was considered as ‘the first functional ransomware for Mac’. Its process does not appear in the front 

rather it communicates with the KeRanger C&C servers remains in the background and seeks required data 

and information to properly start the encryption phase. Then, three days later, the documents’ and files’ 
encryption take place by using KeRanger process. Finally, KeRanger displays the demand to pay the ransom 

for decryption of their files and also stores necessary information and instructions for the system’s 
administrator to pay the ransom.  
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3.3.6 Backdoors  

Backdoors is also a type of malware which easily goes through the usual authentication processes. When any 

of the types mentioned above disrupt the system, then it becomes extremely convenient to install one or 

more backdoors to seek access to the system in the future as well. Another important point is that these 

backdoors are able to be installed before any other malicious software is installed in the system. It is usually 

assumed that companies that manufacture computers already install backdoors to assist their customers 

when an issue arises in the system, but this has not been verified yet [100]. A recent detected was found in 

a vulnerable firmware of almost all dbltek GSM-to-VoIP devices, a range of equipment mostly used by small 

to medium size businesses, it claims. Trustwave researchers claimed they had found hundreds of at-risk 

devices on the internet vulnerable to be infect with this backdoor [183]. 

3.3.7 Spyware and Adware 

Any kind of software which is installed in the system when the system’s administrator is unaware of the 
installation, it is known as spyware. This software gathers all the required data and information which is, 

afterwards, transferred to the attacker and, as a result, attacker utilises the collected data to seek credit card 

numbers, passwords and even to change or covert the settings of the system. Spyware is usually distributed 

using a Trojan horse which spreads with the file that system user unknowingly downloads, considering it 

another file. Therefore, spyware is installed in the system when the user clicks on the software with the 

intention to instal all it. Sometimes, spyware administrator uses legal way to interact with the victim by 

displaying a licence agreement which, most of the times, is not read or understood by the system user. An 

instance of spyware is LogKext. An open source LogKext comprises of user space, kernel extension and client. 

The purpose of kernel extension is to drive the keyboard hardware by using the call back functionality [99].  

3.3.8  Rootkits  

The program which is fundamentally designed for seeking the control of a computer system but without 

being noticed or allowed by the system’s administrator or any other legal user. The major task of the rootkit 

is to take control of the operating system, therefore, seeking access to the hardware is not obligatory or a 

required objective. Usually, rootkits do not show their presence in the system and manage to conceal 

themselves. Most of the times, they are Trojans to seek control of the other systems. The most common 

method which is used for this objective is hiding the running processes to supervise any of the programs 

[100].  Security researchers from ESET came across a Unified Extensible Firmware Interface (UEFI) rootkit in 

the wild being used for cyberespionage. Named LoJax (detected by Trend Micro as BKDR_FALOJAK.USOMON 

and Backdoor.Win32.FALOJAK.AA) after the legitimate anti-theft software LoJack, the rootkit is reportedly 

packaged with other tools that modify the system’s firmware to infect it with malware. 

3.4 Malware Analysis Techniques 

Malware analysis is a study to dissect malware in order to understand its behaviour; moreover, it also 

articulates how to study the different components and artefacts of malicious software. Malware is usually 

analyzed either through static or by dynamic analysis.  Each of this technique has its own advantages and 

disadvantages which are being highlighted in the next section. Furthermore, static analysis can be divided 

into two stages, namely basic and advanced static analysis. Malware analysis based on dynamic analysis can 

also be further subdivided into two categories, named as basic dynamic analysis and advance dynamic 

analysis as depicted in Figure 3.3.  
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Figure 3.3: Malware Analysis Method 

3.4.1 Basic Static Analysis 

This method is carried out against the programs which are alleged as malware by passing it through different 

AV solutions, furthermore applying hashing and performing structural analysis of portal executables are also 

part of this technique. Some of the commonly used tools for performing basic static analysis are 

virustotal.com, MD5deep, PEID, PEview, D4dot, RDG Packer, Exinfo PE etc. 

3.4.2 Advance Static Analysis.  

In this analysis technique, malware functionality is explored by examining its static properties which is the 

process in which malware is reverse engineered in order to analyse the code rather than executing it. 

Numerous approaches have been proposed by the researchers to perform static analysis for e.g. few of them 

are performed by extracting byte code sequence from the binary, by disassembling the binary file in order to 

the extract the opcode sequences, to mine control flow graph from assembly file, sometimes by mining API 

calls from binary file, all these extraction methods are based on the characteristics of binary file. Each of 

above-mentioned techniques constitutes features set which later on are used for detecting malware. The 

most common tool for performing the advanced static analysis is IDA disassembles, which is used to convert 

machine language code into human understandable language. By using this tool, a significant amount of 

information is collected for the malicious program which later on can be used to identify the characteristics 

[48] of malware.  Some of the commonly used tools for performing basic static analysis are virustotal.com, 

BinText, Dependency Walker, IDA etc. 

Numerous approaches have been proposed by the researchers in the past based on static analysis. The 

author in [9] proposed a technique based on the static analysis to detect malicious and benign samples. In 

[35] 4gram features were extracted from the portal executable. Later on, extracted features were used to 

differentiate between malware and benign samples. In latest study Opcode was used as a technique to detect 

malicious files. In this research Opcode of malware samples were obtained by reverse engineering technique, 

furthermore in author view from Opcode one can understand the sequence of operation performed by 

malware and these Opcode instructions can play an important role in distinguishing legitimate software from 

malicious software.  

A similar study was proposed in [103], where opcode-based similarity measure was developed. The proposed 

technique is similar to the simple substitution of traditional cryptanalysis method. This research depicts good 

results for detecting metamorphic malware. Researchers in [61], propose a method using static analysis to 

detect malware, in this method API call sequences and assembly code were combined and later on the matrix 

was created on the basis of similarity which was used to find whether the specific portion of code contains 

malicious traces or not. This paper proposes two different detection methods named as SAVE (Static Analyser 

for Vicious Executables) for assembly call and MEDic (Malware Examiner using Disassembled Code) utilises 

API call for analysis. 
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Although there are lots of advantages of static analysis e.g. it is quite fast and does not require any control 

environment to execute malicious software but in, there are some disadvantages of this technique which 

makes it ineffective e.g. this technique can be easily thwarted by packing, metamorphic, polymorphic 

Techniques, etc. 

3.4.3 Basic dynamic analysis 

In order to overcome the deficiencies and discrepancies in static analysis focus of security analysts have 

shifted to a dynamic approach. In this method, malicious samples are executed in a controlled, confined and 

simulated environment to model the behaviour of malware. The main advantage of this approach is that it is 

not affected by evasion technique like obfuscation and it can capture the polymorphic or metamorphic 

strains of malware. Moreover this technique is completely independent of the source code of the malware. 

Moreover, with the help of different monitoring tools and analysis software the behaviour of malware is 

captured. Below mentioned are some of the tools which are plays vital role for performing dynamic behaviour 

analysis (Table 3.1).  
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Table 3.1: Tools that plays a vital role for performing dynamic behaviour analysis 

Tools Description 

1 
VirtualBox 

VirtualBox provides a controlled virtual environment to execute malicious software 

in order to analyze malware. 

2 Process 

Monitor  

This program is designed to capture, monitors and displays all activities taking 

place in a running system. 

3 Process 

Explorer  
This tool is designed to monitor the resources for the Windows operating systems. 

4 

ApateDNS 

It is a tool which is used to find the desired IP address as requested by malware, 

regardless of which hostname is being resolved, moreover the tool possesses the 

capability to logs all DNS queries it processes. 

5 

Wireshark 

It is a freeware and open-source software used for network packet analysis, 

network protocols analysis, for troubleshooting etc. it allows the users to visualize 

the network traffic at the run time. 

6 

Sandboxes 

It is a security mechanism for running malicious software or malware in a safe and 

control environment without damaging the actual system. Cuckoo, SNDBOX, 

Norman Sandbox, GFI Sandbox, Anubis, Joe Sandbox, VMRayanalyzer are the few 

examples of famous sandboxes. 

 

 

Figure 3.4: Example of sandbox architecture 

3.4.4 Advanced Dynamic Analysis  

In the advanced method of dynamic analysis tools like debugger etc. are used to analysis. Some of the 

disadvantages of these methods are as follows 

• Time and resource intensive analysis  

• In some cases, this technique is prone to analysis evasion as nowadays advance malware observer 

the environment before their executions and in case of finding the virtual environment they halt the 

launching of their payload. 

3.5 Signature-Based Techniques 

It is considered as a simplest and most efficient and effective way to detect the variants of malware. The 

technique refers to static analysis, which is based on examining malicious samples in order to collect the 

information to characterise it either it benign or malicious. This technique is done with intend to extract the 

sequence of bytes and later on use them as a signature. In this technique, security analyst create handcraft 
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signature for malicious files which later on are maintained in a database which needs to be updated 

continuously to detect emerging threats. So, whenever any file is passed through signature-based system 

first of all the code of that file is compared with existing database repository which contains collection of 

signatures constructed on the basis of sequence of program instruction or bytes, if signature of file matches 

with any one of the existing signatures it is considered as malicious else benign. 

 
Figure 3.5: Image containing Signature of Worm 

Most of the commercial antivirus companies use this technique to differentiate malicious files from a benign 

file. In [50] researchers discuss the excellent overview of this technique. Most antivirus companies use this 

technique by collecting numerous signatures to categorize file as clean or malicious.  One of the major 

drawbacks of this technique is that it requires human intervention in order to keep the database of signatures 

up to date and researchers in [99] showed that metamorphic strain of malware could easily thwart this 

mechanism which leads to false negative alerts. Another interesting study was done in which authors have 

proposed obfuscation signature engine. This engine works by scanning the opcode instruction pattern as 

generated by a known engine to detect malicious software.  

This technique proofs to be more efficient as it works by identifying the set of instruction opcode sequence 

and matching this against the signature of the engine rather than scanning the byte stream to match with 

engine signature. 

 

Figure 3.6: signature-based system 

3.5.1 Snort  

Snort is a lightweight network instruction detection system that was developed in 1998. It is one of the most 

extensive and widely used network instruction detection and prevention software deployed both in network 

and research environment.  Snort possesses the capability to analyze the protocol and data flow in real time 

[82]. Snort is a single-threaded application and consists of six parts which are as follows 
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• Catching data package 

• Analyzing the code of data  

• Pre-processing the package  

• Parsing the rule 

• Detecting the engine  

• Logging 

Moreover, snort possesses the ability to be configured and operation in four different modes, it can work as 

a sniffer, as NIDS, as packer logger and instruction prevention system. Some features are elementary features 

of snort, e.g. packet sniffing and logging functionality; however, its fame is because of its capability to use as 

NIDS and instruction detection system. With time, the new features have been added to snort to increase 

the strength and functionality of it, e.g. IPS is one of the new features which has been added to cope up with 

the malicious traffic, e.g. to take preventive measures again dropping and re-direction packets to another 

destination. 

3.5.1.1 Pcap 

In order to capture the raw packets snort uses libpcap and before forwarding to detection engine snort firstly 

decode and latterly on pre-process it as shown in Figure 3.7.  

3.5.1.2 Decode and Pre-processing  

The pre-processing step consists of the following functionality  

•          Early packet droppings 

•          Classification,  

•          Layer three IP fragment reassembly,  

•          Layer four TCP session reconstruction, 

3.5.1.3 Detection engine  

This engine is responsible for inspecting several packet headers as well as payloads against several thousands 

of rules which are stored in a database of pre-defined attack signatures, as shown in Figure 3.7. If any of the 

rules match with a database of pre-defined attack signature a prompt action is taken depending upon the 

configuration of that rule. Generally, ‘alert’ and ‘log’ are the mostly used, alerting facility is indication any 

suspected packet, moreover, with the help of logging facility, all information related to the packet is saved. 

Snort also possess the feature of displaying the ‘alert, and ‘log’ in a number of different formats along with a 

variety of methods. E.g. binary, ASCII, libpcap etc. The binary format is considered as fast and flexible, 

whereas with the help of libpcap user can inspect by different tools, and lastly ASCII format is considered to 

easier and fast.   

 

Figure 3.7: Snort Engine [82] 
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Snort executes its components and task in a sequential manner as depicted in Figure 3.7, therefore kernel or 

libpcap buffer all the packets and which later on fed to snort sequentially for processing in case of detecting 

malicious packets Snort block the traffic and generate alert and log this activity. In contrast, if incoming traffic 

is non-malicious and contains normal packets, Snort will allow this traffic to enter into network without any 

delay. One of the most integral components computationally intensive part of snort is a detection engine 

which is on one side is very effective and on the other end, it is very complex.  The detection engine works 

by analyzing every packet against and matches packet payload strings against thousands of Snort rules which 

are also called pre-signatures are populated at runtime payload. Till date, there are approximately 8000 rules 

in snort for detecting malicious packets. 

3.5.2 Suricata 

In 2009 next generation IDS was introduced by the Open Information Security Foundation (OISF) known as 

‘Suricata’. It is signature-based network intrusion-detection which was initially funded by Department of 

Homeland Security's Directorate for Science and Technology. It utilises externally developed rule sets to 

monitor the ongoing activities and generate alerts to the security analyst on detecting malicious activity in 

the network [83]. 

3.5.2.1 Development and features 

 It is designed as a multi-threaded system in a way to take maximum benefit of multiple cores; moreover, it 

is designed in a way that it can work with traditional and existing network security components. One of the 

distinct features of this device is that it provides security analyst with the visibility into the Application layer. 

Furthermore, its effective HTTP streams parsing makes it one of the fastest IDS till now. Another powerful 

feature of this device is that it possesses the ability to inspect the HTTP traffic without relying on the port 

number to distinguish between types of network traffic; moreover, it also allows the security analyst to 

extract files from HTTP session for analysis by scrutinising inside protocol streams. 

 

 

Figure 3.8: Suricata architecture [83] 
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3.5.2.2 IDS/IPS 

It is designed in a way that it can use and work with other IDS/IPS ruleset e.g. snort ruleset can be integrated 

with Suricata to monitor network traffic and generate alerts on detecting suspicious activity. Suricata runs 

on two different versions of Linux (2.4 and 2.6) operating system and it possesses the functionality to monitor 

passive traffic as well as inline traffic, moreover it can also handle high-speed traffic levels e.g. multiple fast 

gigabit traffic, although version 2.4 also possess the same capability as in version 2.6 but some advanced 

features are not available in this version e.g. no inline option is available in this version. 

3.6 Behaviour Based Techniques 

In this technique, the behaviour of the system is monitored against the defined set of requirements and 

against security policy which is baseline model for normal behaviour of the system. Furthermore if any 

activity deviates from that normal profile, it will be considered an anomaly.  The process of designing, 

generally start by collecting information on what makes normal behaviour for the network and what 

constitutes abnormal behaviour for the network, moreover in the learning stage, it is trained with a set of 

rules that contain normal behaviour of any normal application, and deviation from this behaviour will be 

considered as an attack, misconfiguration or anomaly [46]. One of the biggest benefits of this technique is 

that it can potentially recognize unforeseen attacks. However, in contrast one of its drawbacks is that it 

contains a high false alarm rate. In this technique, the major task is to understand and make an analysis of 

the behavioural aspects of either known or unknown malware.  

The basic behavioural aspects comprise of several factors, for instance; source of malware, types of 

attachments and some statistical aspects. Furthermore, these two techniques can also be applied by utilising 

different kinds of analysis, like; static, hybrid or dynamic analysis. 

 
Figure 3.9: Malware Detection Techniques 

3.6.1 Bro IDS 

Bro a Unix-based and open source Network Intrusion Detection System was developed in 1998 by Vern 

Paxson in Network Research Group at Lawrence Berkley National Lab, and by the International Computer 

Science Institute. It possesses the capability to intercept malicious activity by performing passive monitoring. 

Bro works as network traffic analyzer and classification engine which provides a number of features ranging 

from file extraction, hashing to forensic which can be used to protect the organization from advanced threats 

by performing following tasks which are as follows 

• It filters the network traffic and removes all the irrelevant elements which are of less important for 

analysis.  

• Depicting network traffic data into high-level coherent events. 

•  Translate the event into tangible and actionable information which can be used to secure the 

network. 

• It extracts the network related information and activities from metadata and uses a programming 

language to provide an indication when that activity will be malicious. 
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BRO can be used for multiple functionalities e.g. it can be used for  

• To perform behavioural monitoring,  

• It can be used as Policy enforcement,  

• In most of the network, it is providing Policy-based intrusion detection  

• To perform a multi-layer analysis which includes the finding of specific attacks as defined by signature 

and malicious activities e.g. connection details related to the host and also tell how the hosts are 

connecting to different services. 

• For logging network-related activities. 

3.6.1.1  Components of Bro IDS 

Bro IDS consists of following basic components (Table 3.2) 

Table 3.2: Bro IDS 

Component Description 

1 
Libpcap  

 
The purpose of this component is to remove all irrelevant elements from 

network traffic and to forward the packet to the event engine 

2 Event Engine 
It combines the packets received from the libpcap to make an event which 

describes the executed actions. 

3 
Policy Script 

Interpreter  

 

Comparison of high-level events with the policy scripts. If it detects any 

anomaly it will take action according to policy else, it discards the event. 

Table 3.2: Bro IDS components 

 

 
Figure 3.10: Bro IDS working 

3.6.1.2 Machine learning concepts and definitions 

Machine learning is an approach in which computer learn from examples and experience rather than 

explicitly programmed. So, in other words machine learning is able to extract intricate patterns hidden in 

data to make formal model, a model is a mathematical representation of underlying data properties.  In the 

case of anomaly or malware detection, hidden properties of samples or dataset is used to train the model 
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for classifying it as malware or benign. Machine learning based anomaly detection can be categorized into 

two subclasses. One of them is based on supervised machine learning and other is based on unsupervised 

machine learning. In supervised machine learning, the labelled training set is required. This consists of 

samples of normal and anomalous traffic [167]. It is used to construct the predictive model. Algorithms used 

in supervised machine learning are decision trees, supervised neural networks, support vector machine 

learning, Parameterization of training model, Bayesian networks and k-nearest neighbours. Among these 

algorithms, Bayesian networks and k-nearest neighbours are popular. The rate of detection of supervised 

methods is better than the unsupervised methods. In unsupervised machine learning, the training data is not 

required [179].  

Numerous researchers have proposed different frameworks, models and mechanisms based on supervising 

and unsupervised machine learning to cope up with this problem. One such framework is proposed by 

researchers in [109] used flow-based traffic analysis and supervise machine learning to detect botnets attacks 

by capturing traffic patterns of malicious botnets. In this, study eight different machine-learning algorithms 

e.g. NB, SVM, C4.5, random tree, random forest etc. Furthermore, it was found from the experiments that 

Random tree classifier is best performing machine-learning algorithm, moreover the authors have also 

evaluated the size of traffic needed per flow required to capture the patterns of malign traffic. Series of 

experiments were performed to check the efficacy of the system by capturing the traffic traces from P2P 

botnets and malign applications. Authors have shown that their model can detect the accurate and timely 

botnet traffic if monitored only for certain period of time along with a number of packets per flow by just 

using purely flow-based traffic analysis and supervised machine learning.  

The use of deep learning for detection of network attack in cyberspace is increasing day by day because of 

its capability of learning pattern, a resilient mechanism to novel attacks because of its capability to extract a 

high level of features. In [1] proposed a distributed deep learning framework to detect an attack in range of 

networks e.g. IOT/Fog network etc. In authors view deep learning can discover a hidden pattern in traffic 

dues to its self-taught and compression capability which helps discriminate malicious traffic from benign 

traffic. The performance of the proposed system is measure using accuracy, detection rate, false alarm rate 

etc. which show that performance of proposed architecture base on deep learning to detect intrusion in a 

system is much than the shallow model. 

Unsupervised machine learning in the context of anomaly detection is based on the following two 

assumptions. The first assumption is that most of the network traffic is normal whereas some are abnormal. 

Then the second assumption is the malicious traffic is statistically different from the normal traffic. Using 

these two assumptions, the data groups which are frequently appeared considered as normal and the data 

groups which are infrequently appeared considered as malicious. The algorithms used in unsupervised 

machine learning are SOM– self-organizing maps, C-means, K-means, expectation-maximization meta-

algorithm (EM), one-class support vector machine and ART-adaptive resonance theory. Among them, SOM 

is one of the popular techniques.  

This technique needs a branded training usual that covers both usual and irregular examples for building the 

predictive model. Hypothetically, supervised approaches are supposed to deliver healthier discovery rate 

than unverified methods. The greatest shared oversaw procedures are overseen neural nets, 

parameterization of exercise perfect, provision course mechanism knowledge, k-nearest neighbours, 

Bayesian networks and decision trees. K-nearest neighbour (KNN) is one of the most conservative 

nonparametric methods that are used in oversaw knowledge aimed at anomaly detection. It computes the 

estimated spaces between dissimilar points on the input vectors and then assigns the unlabelled point to the 

class of its K-nearest neighbours. The Bayesian network is an additional general model that can encode 

probabilistic relations between variables interest. This technique is generally used for anomaly detection in 

combination with arithmetical schemes. These oversaw techniques have numerous compensations, counting 

the competence of indoctrination interdependencies between variables and of forecasting events, 

lengthways with the aptitude for incorporating both previous knowledge and statistics. 
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Figure 3.11: Visual representation of the relationship between data-related fields 

 

Network intrusion detection systems always play vital roles in detecting advances attacks e.g. Denial of 

Service (DoS), DDoS etc, most of NIDS in the past were developed based on shallow architecture, but with 

the advent of deep learning the mechanism for developing efficient and flexible NIDS is totally change and 

now days advance NIDS are designed on approaches based on deep learning. In [134] researchers have 

proposed one such solution for the development of an efficient NIDS, which is based on a sparse autoencoder 

and soft-max regression. In this study, writers use self-taught learning one of the deep learning technique on 

an NSL-KDD dataset for network intrusion.  

In a recent study proposed in [61] introduces an intrusion detection based on a deep belief network 

(unsupervised learning) to detect the attacks and classify attacks. In this paper, authors have performed a 

number of experiments using NSL-KDD dataset. The proposed system did not only detect attacks but also can 

classify into five groups. Furthermore, it was able to accurately identify and classify network based on limited, 

incomplete and nonlinear data sources. The authors showed that their system is able to achieve 95% accuracy 

for only fifty iterations which shows the efficacy and efficiency of their system is much higher than any other 

system proposed until now. 

3.7 Evasion of Malware and Anti-Evasion Approaches 

3.7.1 An overview of Evasion Approaches and Malware Camouflage Evolution  

Since the emergence of malware, the challenge is to enhance and prolong the lifespan of the malware. This 

task is conveniently achievable when the working of antivirus meets the required standard. In order to make 

the malware successful, the malware code’s camouflage plays a significant role. Generally, the four 

generations of malware provide a foundation in the development of stealth methodologies. These 

generations are; Encryption, Oligo morphism, Metamorphism, and Polymorphism which are displayed in 

Figure 3.12. The explanation of each of the generation is described below [100]. 
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Figure 3.12: Phases of Malware for development of stealth methodologies [99] 

3.7.1.1 Encryption 

The most important issue for the malware authors is to escape and keep themselves safe from all code 

analyzer technicians. This helps them to have more time for the lifetime of their produced malware. The first 

technique used by the malware programmers for this purpose was encryption and in 1987, the first-ever 

encrypted virus was produced. [13] It is notable that the two fundamental parts of the encrypted virus are: 

main body and a decryption loop. Decryptor has the function to decrypt or encrypt the main body’s code. 
Whenever the virus initiates to run on the victim’s system, the first step is the decoding of the main body 
into a machine executable code by the decryptor loop and also converts it into meaningful data. The overall 

working structure of an encrypted virus is shown in (Table 3.3). 

Table 3.3: Structure of an encrypted virus [13] 

  Before decryption After decryption  

Decryptor  For i=1 to size of (body) 

Decrypt byte(1); 

Jump to body 

For i=1 to size of (body) 

Decrypt byte (1); 

Jump to Body 

Virus body  Encrypted Bytes 

  

(Not Visible Before Decryption) 

Infector() ; 

… 

Payload() ; 

… 

… 

… 

 

3.7.1.2 Oligomorphism 

The next development in hiding the malware produces the oligomorphic viruses. The other name to 

oligomorphic viruses is given as semi-polymorphic. It is the advanced and next phase after encryption. The 

effort was to give a unique appearance to the decryptor loop of encrypted virus in every attack and infecting 

a system. [73] While producing this virus, different types of decryptors are selected randomly to attack a new 

system. This is the technique to avoid using identical codes for various victims. In 1990, Whale was the first 

virus and it was a DoS virus. [128] Oligomorphism is not considered as the main issue for the antivirus 

software. The reason is that it becomes slightly more difficult for antivirus to observe this kind of malware. 

Oligomorphism is not like an encrypted virus and antivirus needs to check all decryptors rather than merely 

checking one decryptor which takes longer time.  
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3.7.1.3 Polymorphism  

Polymorphism is the most advanced and complicated form of viruses among previously described 

terminologies, i.e. oligomorphism and encryption. [120] The term ‘Polymorphism’ is generally used for 
decryption engine and in polymorphic malware thousands and thousands of decryptors can be produced 

simply by manipulating the instructions in the next variant. Although Polymorphic viruses have a resemblance 

to the encrypted and oligomorphic viruses in terms of utilising code encryption, on the other hand, they have 

the capability to create infinite new decryptors. Usually, decryptors consist of variable elements which are 

fixed size instructions and are designed with the intention to change the size or shape of the code.  In general 

obfuscation techniques are used to produce Polymorphic malware. It contains potentially highly variables 

elements which can allow changes like subroutine creation, algorithmic register initialization etc., and making 

it difficult to capture the signature of unpacking stub.   

In 1990, Mark Washburn created, 1260, which was the very first Polymorphic virus that was of the chameleon 

family. The purpose of this virus is to make it more difficult to analyze and this is done by changing the actual 

appearance of the virus. The fundamental principle is to bring a modification in the code’s appearance 
constantly for making it unobservable in each different copy.  This is the obligatory phase before it is launched 

on a victim. It is done to escape the detection and to avoid any exploitation by the antivirus scanner engine. 

These techniques are quite difficult in terms of practical implementation and management.  

3.7.1.4 Metamorphism  

Igor Muttik has defined Metamorphosis in these most precise and concise words; “Metamorphics are body-

polymorphic”. [128] This technique is different from the previously explained other three types because it 

does not have any encrypted phase or part. This is the reason it does not require any decryptor. However, 

on the other hand, it has some similarity with the polymorphic virus in using a mutation engine. In addition 

to this, the whole body is mutated rather than changing merely the decryptor loop. Therefore, metamorphic 

malware contains a mutation engine whose job is to generate and change the code every time it is being 

executed while keeping the algorithm same.  This mechanism is achieved by changing the registers, 

substituting the instructions with equivalent ones with diverse operands, inserting garbage code, scrambling 

the sub-routines within the program etc., so as a result of every time a new signature will be produced which 

will easily thwart the signature-based detection system.  

In 1998, the first metamorphic virus, AGG, was produced for the sake DoS. Besides that, W32 was the first 

metamorphic whereby an attempt was done by 32 bits metamorphic virus, which launched an attack to 

target Portable Executable files.  

Two of the major evasion techniques are listed below (Table 3.4). 

Table 3.4: Major evasion techniques  

Evasion techniques Description  

1 Packing 

In this technique packed executable is created by applying compression or some 

time encryption algorithms; the resultant packed executable contains an unpacking 

stub along with the original packed code. The unpacking is quite complicated as can 

easily thwart static analysis because when this packed binary is executed, the 

operating system will first load unpacker stub in memory which will, later on, 

unpack the application bring all the necessary exports, imports and later on transfer 

control to the original entry point of the executable. 

2 Obfuscation 

As time is changing, vendors are finding ways and developing advanced 

techniques to outsmart them. Currently, the same classic way of malware 

penetration is employed but now, advanced techniques and variants are used 

which are quite different from those of early days of first boot sector viruses. In 

these methods, the fundamental purpose is to escape the Intrusion Detection 

System (IDS). Here, in this section, some modern techniques of concealing the 
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malware detection will be discussed. Most of these are utilised in metamorphic 

and polymorphic malware. [70] 

3 

Dead code 

insertion 

 

This is one of the simplest techniques which gives instructions for changing the 

appearance of a program and not its behaviour. [70] Nop is an instance of this 

kind of instructions. In this instruction, the original code is obfuscated. This 

technique can be undermined and defeated by the antivirus scanners in such a 

way that ineffective instructions are deleted. However, to avoid this detection, 

authors use more complex code sequences. 

4 
Register 

Reassignment 

 

This is also a very simple technique in which the code and behaviour remain the 

same while registers are modified and switched from generation to generation. 

[47] The only challenge to this technique is from wildcard searching that has the 

ability to make this method useless. 

5 
Subroutine 

Reordering  

 

In this technique, the already set order of the original code’s subroutines is 

obfuscated randomly. A wide variety of n! variants can be produced in subroutine 

ordering. [70] Here, the number of subroutines id denoted by n. for instance; 10 

subroutines generated by Win32/Ghost, it becomes 10! = 3628800 different 

generations.  

 

6 
Instruction 

Substitution 

 

As its name depicts, instruction substitution replaces some instructions with some 

other which are similar to the earlier ones. In this way, it evolves an original code. 

For instance; mov can easily be replaced with the other word like push/pop. This 

technique has a great capability of code modification using a collection of words 

with equivalent instructions [47]. 

7 Code 

Transposition 

In this technique, the order of the original code’s instructions takes place while it 
keeps the behaviour the same.  

8 Code 

Integration 

This technique was put forward by the Win95/Zmist malware. While practically 

applying this technique, in the first step decompilation of the program takes place 

by Zmist in order to turn them into manageable objects and then in an 

unobservable way, it becomes of part of them by adding itself between those 

objects and finally, the integrated code is reassembled which ultimately becomes 

the part of a new generation.  

3.8 Anti-Evasion Approaches  

Generally, two basic techniques, which are opposite to the evasion approaches, are used for anti-evasion of 

malware [159].  

3.8.1 Malware Deobfuscation 

Deobfuscation is a technique which is used for reverse engineering obfuscated code. It is opposite to the 

obfuscation technique created for malware penetration. It is undoing the obfuscation phases. There are 

several methods for deobfuscation. One common method is explained below in three deobfuscation steps. 

[159] 

3.8.2 Unpacking 

This is the first step in deobfuscation which involves starting the malware, taking its image and afterwards, 

copying it to write in an executable manner which can be used for further analysis, like; analyzing the code 

or in disassembling. It is noteworthy that there are, generally, two types of unpackers: generic unpackers and 

particular unpackers. Both of these have different tasks to perform.  
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3.8.3 Binary rewriting and editing 

In this phase, all kind of rewriting is eliminated which has been created on the original binary code. After 

that, the results are authenticated and validated. 

3.8.4 Malware binary reconstruction  

In this phase, the actual malware executable is reconstructed. This is done by making the import table again. 

Here, the original entry point of malware is identified to eliminate the obfuscation. 

3.8.4.1 Malware Unpacking  

This process has the task to recover the original code, which has been packed, from a packed malware binary. 

While seeking to achieve this, in this process malware binary is started to run and then its process image is 

taken. Here, in the image of a process, unpacking routine, as well as original code, is displayed. Then, the 

image process is analyzed which is also referred to as raw dumped binary. This is the phase of reverse 

engineering where the original binary code is traced. Although, it is a successful method in some cases, the 

original code is packed in such a complicated way that it cannot be fully sought [159].  

 

Figure 3.13: Malware detector 

To counter evasion there are some anti-evasion techniques which are significant to understand in order to 

detect malware. The important part is to understand malware’s behavioural aspects and execution of 

malware binary makes it easily possible. On execution of malware, few signs of abnormalities are observable. 

The quick detection of malware completely relies on the fact that how much is the capability to manage and 

handle the obfuscated malware. In order to handle this problem, there is a component utilised which is 

known as malware detector.  It can be defined in these words; malware detector is a system which utilises 

signatures and various other heuristics parameters to detect malware. Since Polymorphism and 

Metamorphism are the two most popular obfuscation techniques, therefore, the malware detector acts as a 

safeguard and to DE obfuscate this malware. For that sake, along with DE obfuscating techniques, reverse 

engineering methods are also used which usually initialize process with any static program analysis. There 

are two major input parts of the malware detector. Signature or behavioural parameters of the given code, 

Executable code under inspection 

Henceforth, these two input components are obligatory for the malware detector to conclude the code either 

as malware or benign. This process is shown in Figure 3.13.  

3.8.4.2  Malware Normalization  

This is the process where an obfuscated version of Malware is accepted and deobfuscates the program and 

then, ultimately, executables are normalized. This technique raises the detection rate. The overall process 

involves the following steps [159].  

• Step 1: In the first step, decompression software decompresses Malware PE binary code. 

• Step 2: In this step, the decompressed code is disassembled by using standard disassemblers.  
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• Step 3: In this phase, the normalizer takes the disassembled code where obfuscation is eliminated 

and after certain checks, the normalized code is produced.  

• Step 4: Afterwards, a sign of normalization code is extracted by the malware detector after seeking 

the normalized code and then it is compared with the signatures already present in the signature 

repository.  

• Step 5: This comparison is carried out by the highest level of signature matching of normalized 

signature code with the repository signature. For this purpose, any type of sequence alignment 

algorithm can be used. In the final stage, the database keeps the normalized code sign in the record 

in order to use it in future for the sake of comparisons with other similar variants.  

 

Figure 3.14: Malware Normalization and Signature Comparison [70] 
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4. The quest for privacy in the IoT 

4.1 Introduction to IoT and its Applications 

As Cyber-Trust ecosystem builds upon the IoT technologies, it is important to highlight some of IoT common 

applications and existing concerns that related to the data privacy. IoT devices are implemented in Smart 

Homes, Health Sector as well as environmental and public safety sector. This chapter investigates the state-

of-the-art for IoT applications as well as highlighting the need for privacy-preserving data mining and 

presenting common Heuristic and cryptographic techniques and tools to overcome challenges of privacy in 

the data collected by Cyber-Trust components on WP6 as well as in other interconnected components.  

4.1.1 Smart Homes 

The IoT introduces significant benefits for smart home applications over conventional communication 

technology [38]. The smart home is built mainly by IoT devices, the environment of these homes enables 

people to control and monitor their homes remotely by connecting their physical devices via the internet, 

even power consumption can also be accessed and monitored. The smart home is probably where there are 

likely to encounter internet-enabled things. Smart Homes also include other components like smart speakers, 

cameras, smart plugs, thermostats, light bulbs, and smart fridge [124]. As the smart home utilises internet 

connectivity, this introduces security and privacy-related issues. For Smart Homes, internet service providers 

might have control of the inclusive collected and operational information and monitor the user’s behaviours 

with or without the consumer's consent. For example, RFID based sensors also can be used with the network 

to control the Smart Homes as well as to track objects in Smart Homes and monitor the conditions [137]. As 

data can be gathered and transmitted over wireless channels, and able to understand and monitor the 

pattern and behaviour of consumers activities without any difficulty. However, still there is a chance of 

information leak, and it can be stolen by a third party [124]. 

4.1.2 Healthcare 

The application of IoT in medical health is enormous. For example, the objective of eHealth is to improve the 

health quality, efficiency and cost of health care. This helps physicians to monitor patients remotely, along 

with allowing patients to control and manage individual health records efficiently likewise monitoring heart 

rate, blood pressure, diabetes level and fitness level [38].  As the IoT has improved the medication and health 

care service, it also imposes some issues. These health records are exchanged through the internet. Their 

accessibility and availability on internet initiated some serious privacy issues. For instance, in June 2015, a 

malware conceded into blood gas analyser and a huge privacy-violation attack occurred when it gained access 

to confidential health records [124, 39]. 

4.1.3 Supply Management 

In supply management, IoT-enabled technologies are a vital role. It provides the consummate ability of 

computer systems or software to exchange and make use of information throughout the product lifecycle. 

This utilises some of the RFID techniques. It enables to record the product information beyond the 

manufacturing level to the purchasing and consumption levels [137]. 

Consequently, manufacturing companies can track customer information based on that product information. 

Moreover, IoT through intelligent transportation system (ITS) plays a major role in vehicular ad hoc networks. 

The daily electricity consumption from a grid can be monitored and managed through the application of IoT 

technology [38]. Such information can be used to reveal the habits and behaviours of consumers and expose 

them to privacy invasions [124].  
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4.2 The need for Privacy-preserving data mining 

Data Mining is the process of extracting information from a large amount of data and present interesting 

information from large amounts of data stored either in databases, data warehouses, or types of data 

repositories. This extracted information can be used for many purposes; this includes decision making, 

process control, and information management [75]. Therefore,  data mining is considered one of the most 

important frontiers in database systems and one of the most promising interdisciplinary developments in 

the information industry especially with the emergence of artificial intelligence and machine learning 

technologies. As the aim of data mining is to extract valuable information from larger datasets, there are 

more chances of vulnerability and misuse in which user privacy can be misused or exploit [157]. As a result. 

privacy-preserving has become a more significant concern concerning the success of data mining [95]. 

Privacy-preserving data mining (PPDM) ensures the protection of the individuals’ data privacy or sensitive 
knowledge without losing the value of the information. Consumers have become aware of the privacy 

intrusions on their data and are very hesitant to share sensitive information. This may lead to the 

unintentional results of data mining. To maintain privacy along with data mining, several methods have 

been developed to counter such issue [157, 155]. As IoT devices generate a huge volume of data, this 

postures new open research challenges on security and privacy issues. The distribution of IoT services is 

intended for the goal to enhance the privacy preserving in consumers private life. These objectives can be 

accomplished by assuring users’ authentication, data confidentiality, data integrity and anonymity levels.  

• Users Authentication: Authentication process identifies the user or the object which are authorised 

to access the information by means some mechanisms, likewise password, digital signature, 

challenge and response and so on. Deploying an effective authentication measures ensure only those 

authorised objected can access the confidential information and manage, change IoT data. 

• Data confidentiality: Data confidentiality involves a set of rules or a promise usually executed 

through confidentiality agreements that limits access or places restrictions on certain types of 

information. This can be accomplished by means such as the adoption of various encryption schemes, 

such as Rivest, Shamir, and Adelman cryptosystem (RSA).  

• Data integrity: Data integrity validate any unauthorised changes to the original information. In the 

context of IoT, integrity can be preserved by leveraging hash algorithms and utilising existing of 

technologies such as blockchain.  

• Anonymity Level: A privacy policy defines how data referring to individuals can be collected, 

processed and diffused according to the rights that individuals are entitled to [156]. Depending on 

the specified purpose, a certain level of anonymity may be guaranteed. The anonymity represents 

the absence of identifiable data of a user or of data that allows inferring identifiable data (e.g., first 

name, surname etc.). For example, from the user's point of view, it is crucial to guarantee that their 

privacy is not violated. In order to avoid such violation of user privacy, a key role is played by the 

correct definition of privacy policies and the related defined confidentiality and anonymous level of 

information. The main reason that makes privacy a fundamental IoT requirement lies in the 

envisioned IoT-aided application domains. 

A framework for privacy-preserving data mining is proposed by the researcher [95] is shown in Figure 

4.1. Data from different data sources or operational systems are collected and are preprocessed 

using extract, transform and load (ETL) tools. This transformed and clean data from the level 1 is 

stored in the data warehouse. Data in a data warehouse is used for mining. In level 2, data mining 

algorithms are used to find patterns and discover knowledge from the historical data. After mining, 

privacy preservation techniques are used to protect data from unauthorised access. Sensitive data 

of an individual can be prevented from being misused [157]. 
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Figure 4.1: The framework of privacy-preserving data mining [95] 

As discussed in the previous section the IoT is a multi-domain technology with a network of devices and 

services to exchange information. Each domain can apply its security, privacy, and trust requirements [94]. 

The privacy-preserving data mining techniques, propose the setup for minimising the risks of revealing 

sensitive information and provide sensitive content analysis. It introduced some of the privacy and security 

issues in IoT technological aspects. Some of the issues, in perspective of users, datasets and fundamental 

technologies are discussed. There are some of the major issues related to IoT privacy in organisations over 

the technical challenges. Figure 4.2 summarises the four critical aspects of IoT privacy [124]. IoT devices 

become part of the internet network, and the generated data is transmitted and exchanged over the internet, 

rendering user privacy a sensitive subject in many research works [140, 105]. Although an abundance of 

research has already been proposed concerning privacy, many topics still need further investigation. Privacy 

in data collection, as well as data sharing and management, and data security matters remain open research 

issues to be fulfilled [5]. 
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Figure 4.2: Summary of the critical aspects of IoT privacy [124] 

The user, privacy awareness issue, is addressed, proposing a privacy management scheme which enables the 

user to estimate the risk of sharing sensitive data. It also aims at developing a robust sensitivity detection 

system, able to quantify the privacy content of the information [155]. In order to establish more secure and 

readily available IoT devices and services at low cost, there are many security and privacy challenges to 

overcome [94]. Some of these challenges for IoT privacy issues are discussed in the following subsections.   

4.2.1 User Privacy 

One of the serious issues of IoT data mining is the user privacy issue. It is the identification of personal 

information during communication over the Internet [137]. For instance, if a consumer buys an RFID-tagged 

object in some situations, a consumer’s personal information could be automatically linked to the object and 

known to the communication system providers. Such user information leakage can lead to privacy threats in 

terms of tracking, localising, and personalisation. 

Similarly, assume consumer possesses a set of objects that are linked together. If adversaries can distinguish 

ownership of individual objects, they might be able to estimate the ownership of the remaining objects. 

These types of scenarios allow user profiling and tracking to be vulnerable to such security breach.  

Smartphones and other mobile devices connected to the Internet could also disclose the user’s sensitive 
information such as geographic location and compromise privacy. In practice, users have different levels of 

privacy awareness and concern, and thus are ready to disclose information at different levels. In general, IoT 

users might encounter privacy threats in terms of tracking, profiling, access control and confidentiality, data 

protection, content confidentiality and reliability, and privacy detection. Because of the IoT’s range, various 
privacy risks and challenges must be considered before deploying an application or solution. 
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4.2.2 Privacy Issue in Data Mining  

Other privacy issues identified in this area relate to data mining, the context of applications, utility issues, 

cryptography, and adversarial collaboration [24]. Scalability matters for IoT applications that contain 

numerous smart objects or that manage biometric data are in some cases collected, processed and stored in 

large volumes of real-time, highly distributed data. Distributed processing can also lead to unprecedented 

challenges related to data mining privacy, along with liability for data breaches (that is, the release of secure 

information to distrustful entities) in which distinct levels of data quality. Privacy threats related to data 

sharing and transmitting arise with the disclosure of location and temporally sensitive data traffic. While 

collecting large sets of raw data, it is challenging to balance the privacy preservation in data cleaning and the 

intentional reduction of data quality and original purpose without losing information needed for data mining 

and analysis. Collecting, sharing, and transmitting sensitive data connected to humans are the most critical 

privacy issues in the context of applications. Computational and theoretical limitations can be associated with 

privacy preservation over high-dimensional datasets. Because individuals and cooperative users have 

different privacy constraints, the records in a given dataset should be treated differently for anonymisation 

purposes. The collected data might be used and published for purposes other than the original objective 

without user consent. Access control and maintenance of such data, with the assurance of privacy protection 

for the corresponding data owner, should be carefully considered. As computer storage mediums can store 

large volumes of data, they offer high availability at low cost. Consequently, once information is generated, 

it is most likely stored infinitely, and thus “digital forgetting” can lead to privacy violations from the data 
owners’ perspective [124].  

4.2.3 Confidentiality Issues in Data Mining 

A critical problem that arises in any collection and mining of data is the confidentiality of the data being 

collected. The need for privacy is sometimes due to the law (e.g., for medical databases). Data confidentiality 

represents a fundamental issue in IoT scenarios, indicating the guarantee that only authorised entities can 

access and modify data. In the IoT context, not only users but also authorised objects may access data. This 

requires addressing two important aspects: first, the definition of an access control mechanism and second, 

the definition of an object authentication process, with a related identity management system [38]. As data 

in IoT applications will be related to the physical realm, ensuring data confidentiality is a primary constraint 

for many use cases like Smart Homes and healthcare. 

4.2.4 Semi-Honest Adversaries  

When there is data being transmitted or mined between two or more parties, a malicious adversary who is 

able to intercept the channel could alter the data. In which this could lead to a very damaging effect. Then 

the output obtained is the result of the algorithm on the other party’s database alone. Although this attack 
cannot be prevented, we would like to prevent a malicious party from executing any other attack. However, 

for this initial work assuming that the adversary is semi-honest (also known as passive). It correctly follows 

the protocol specification yet attempts to learn additional information by analyzing the transcript of 

messages received during the execution. This remark that although the semi-honest adversarial model is far 

weaker than the malicious model (where a party may arbitrarily deviate from the protocol specification), it 

is often a realistic one. This is because deviating from a specified program which may be buried in a complex 

application is a non-trivial task. Semi-honest adversarial behaviour also models a scenario in which both 

parties that participate in the protocol are honest. However, following the protocol execution, an adversary 

may obtain a transcript of the protocol execution by breaking into one of the parties’ machines [178]. 

4.3 Heuristic-Based Techniques and tools 

Privacy preserving data mining is a trending area of research in data mining. The possible side effects of data 

privacy are analysed in the data mining algorithm. The governing aim of PPDM is to develop techniques and 

approaches for amending the original information in such a way that the sensitive data remains private even 
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after the mining process occurred [157]. For this reason, there is a need to develop mechanisms that can lead 

to privacy control systems to convert a given database into a new one in such a way to preserve the general 

rules mined from the original database. The procedure of transforming the source database into a new 

database that hides some sensitive patterns or rules is called the sanitisation process [151]. For instance, a 

small number of transactions must be modified by deleting one or more items from it or even adding noise 

to the data by turning some items from 0 to 1 in some records. The resulted database is called the sanitised 

database. On the one hand, this approach slightly modifies some data, but this is perfectly acceptable in some 

real applications. Moreover, heuristic approaches can also be classified into distortion-based schemes and 

blocking based schemes. These approaches have been getting the focus of attention for the majority of the 

researchers due to their efficiency, scalability and quick responses [107]. Figure 4.3 delineates the catalogue 

of the PPDM algorithm in the consent of heuristic and cryptography-based approaches. It does not cover all 

of the new PPDM algorithms [45]. In this section, different PPDM approaches in IoT, likewise data 

perturbation, blocking based, cryptographic techniques are discussed.  

 

Figure 4.3: A classification of the developed privacy preserving data mining algorithms [45] 



4.3.1 Data Perturbation  

Data Perturbation is a technique for amending data using a random process. This technique deceptively alters 

sensitive data values by altering them by adding, subtracting or any other mathematical formula [77, 64]. 

This technique can handle different data types, such as character type, Boolean type, classification type an 

integer. In discrete data [77], there is a requirement of preprocessing the original dataset. The preprocessing 

of data is categorised into attribute coding and obtaining sets coded dataset. The method of the average 

region to disperse the continuous data is used in this approach. Data distortion or data noise are different 

names for data perturbation. Distortion is accomplished by applying different methods such as adding noise, 

data transpose matrix, adding unknown values [166]. In some perturbation methods, it is challenging to 

preserve the original data fully. Some of these are distribution-based techniques. In order to overcome this 

problem, the new algorithm, rule mining and the distribution-based algorithm were developed which able to 

reconstruct the distributions. This means that for every individual problem in classification, clustering, or 

association rule mining, a new distribution-based data mining algorithm needs to be developed.  

4.3.2 Cryptographic Technique 

Cryptography is a technique through which sensitive data can be encrypted and becomes unreadable. In 

which it can be leveraged to preserve sensitive data. In [178], the authors introduced a cryptographic 

technique that provides security and protection of sensitive attributes. There are different cryptographic 

algorithms exist (i.e. RSA, AES). Although cryptographic schemes protect the confidentiality and privacy of 

the data from leakage, however, cryptographic-based approaches have some disadvantages such as that it is 

computation expensive.  Therefore, it is challenging to apply cryptographic algorithms for huge databases. 

4.3.3 Blocking based technique  

In blocking-based technique [152, 2], authors declare that there is a sensitive classification rule which is used 

for hiding sensitive data from malicious intruders. In such a technique, there are two steps that are used for 

preserving privacy. First, is to identify transactions of the sensitive rule. Second, is to replace the known 

values to the unknown values. In this technique, there is scanning of original database and identifying the 

transactions supporting sensitive rule. 

Moreover, then for each transaction, the algorithm replaces sensitive data with unknown values. This 

technique applies to those applications in which one can save unknown values for some attributes. Authors 

in [152], hide the actual values and replace ‘1’ by ’0’ or ‘0’ by ‘1’ or with any unknown values in a specific 
transaction. The replacement of these values does not depend on any specific rule. The main aim is to 

preserve the sensitive data from unauthorised access. There are different sensitive rules according to the 

requirements. For every sensitive rule, the scanning of the original database is required. When the left side 

of the pair of rules is a subset of attribute values pair of the transaction and the right-hand side of the rule 

should be same as the attribute class of the transaction then the only transaction supports any rule. The 

algorithm replaces unknown values in the place of an attribute for every transaction which supports that 

sensitive rule. These steps will continue until the unknown values hide all the sensitive attributes. 

4.3.4 Condensation Approach  

Another approach used is condensation technique. Charu C. Aggarwal introduced it and Philip [24], which 

builds constrained clusters in the data set and after that produces pseudo-data. The basic concept of the 

method is to contract or condense the data into multiple groups of predefined size. For each group, individual 

statistics are maintained. This approach is used in dynamic data update such as stream problems. Each group 

has a size of at least ‘k’, which is referred to as the level of that privacy-preserving approach. The higher the 

level, the high is the amount of privacy. They use the statistics from each group in order to generate the 

corresponding pseudo-data. This is a simple privacy preservation approach, but it is not very efficient as it 

could lead to loss of information. 
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4.3.5 Hybrid technique 

This is the techniques through which one can combine two or more techniques to preserve the data. The 

authors [152] proposed a hybrid technique in which they used randomisation and generalisation. In this 

approach first, they randomise the data and then generalised the modified or randomised data. This 

technique protects private data with better accuracy. Also, it can reconstruct the original data and provide 

data with no information loss. Many other techniques can also be combined to make a hybrid technique such 

as data perturbation, blocking based method, cryptographic technique and condensation approach etc. 

4.3.6 Data Anonymization  

Anonymisation methods have an essential tool to preserve privacy when releasing sensitive data set from a 

larger volume of data. Most survey says common type of attack for anonymisation algorithms is based on 

PPDM and PPDP is presented in [81] and their data privacy is explained. There are different tools for data 

anonymisation these include: 

• Oracle Advanced Security, Oracle 

• IBM Security Guardium 

• IBM Dynamic Data Masking Informatica 

• Micro Focus Data Express, Micro Focus 

• IMASK, Mentis 

• CA Data Manager 

• CA Technologies Compuware 

• IRI Field Shield , IRI 

• Data Base Protector Protegrity 

• Thales eSecurity, Thales 

• Soflab GALL, Soflab Technology 

• Privitar Publisher, Privitar Ltd 

De-anonymization is the reverse process in which anonymous data is cross-referenced with other data 

sources to re-identify the anonymous data source. Generalisation and perturbation are the two popular 

anonymisation approaches for relational data. 

4.4 Cryptography-Based Techniques and tools 

Cryptography provides tools for privacy-preserving computations, which are closely related to privacy-

preserving data mining. For example, in [52] a privacy-preserving social network analysis is being proposed, 

which allows several crime investigators to collaborate without actually exchanging “sensitive” private 
information, since the investigator can compute important metrics by means of a social network analysis 

while keeping the entire social network unknown; hence, the investigator can request data from other sites 

to augment his view without revealing personally identifiable data.  

Generally, such cryptographic tools include secure multiparty computation, homomorphic encryption and 

zero-knowledge proofs. There are also several other relative tools such as order-preserving encryption; in 

this Section though we shall focus on the first three cryptographic primitives since these constitute possible 

candidates for alleviating privacy issues in the context of the Cyber-Trust project. These approaches are based 

on the assumption that identities of the users are not hidden, whereas the act of assigning feedback to a user 

(in the Cyber-Trust case, to a device) is also not concealed; however, the value of the submitted feedback 

and any other related information is considered private. It should be pointed though that privacy in 

computations can also be enhanced under a different assumption, namely via considering that the true 
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identity of the users that submit their feedback is hidden, which in turn means that a user is being associated 

with one or more pseudonyms which are unlinkable to his real identity. Again, cryptographic primitives for 

appropriately deriving such pseudonyms can also be used (e.g. several design goals, depending on the 

context, can be considered, such as user-pseudonym unlinkability or pseudonym-pseudonym unlinkability – 

a general survey, focusing on the specific case of privacy-preserving reputation systems, is provided in [117]). 

4.4.1 Secure Multiparty Computation 

Distributed computing is the scenario where a number of computing parties carry out a combined 

computation of a certain operation.  For example, these parties may be devices or servers that maintain a 

distributed system while the operation could be the database update. The main goal of secure multiparty 

computation (SMC) is to allow the participating entities to carry out distributed computing operations in a 

secure manner. Considering the two-party problem where two entities, with secret inputs X and Y 

respectively, wish to compute the median of the union X ∪ Y without revealing any information except from 

the output [11]. The two parties in order to perform this task, execute an interactive protocol, by sending 

messages to each other and the outcome of this operation is to obtain the desired output.  

4.4.2 Security in the multiparty computation 

 Since, distributed computing is about computing under the threat of machine failures and other accidental 

incidents, SMC is concerned with the probability of adversarial behaviour. This means that, it is a common 

phenomenon that the protocol in a single execution to come under attack by an external adversary or a 

subset of the participating entities. The adversary or the entities that have under its influence, executing such 

operations usually aim to obtain private information or cause the combined computation to fail and lead to 

incorrect output. Secure protocols should endure any adversarial behaviour and thus, various security 

properties have been introduced that aim to claim and prove security for multiparty computation: 

1. Privacy: Except for the combined output, no party should obtain any other information about the 

other parties’ input.  

2. Correctness: The output that each party receives, is certain to be correct. 

3. Independence of Inputs: The parties that are under the influence of the adversary, select different 

inputs from the inputs of the honest parties. 

4. Guaranteed Output Delivery: The adversary should not be capable to disrupt the computation and 

prevent any party from receiving its input (e.g. by executing a “denial of service attack”).   

5. Fairness: The scenario where the adversary and the parties that have under its influence obtain their 

outputs if and only if the honest parties receive theirs, too.  

It is of great importance the fact that these properties do not constitute a definition of security but are a set 

of requirements that any protocol must hold in order to be secure. Furthermore, it is assumed that the 

adversary controls less than the 50% of the total number of the participating entities. Otherwise It is difficult 

to maintain the properties of the protocol for SMC [30].  

4.4.2.1 Adversarial power. 

The previously mentioned security properties omit a scenario where the adversary and the parties that are 

under its influence attack the protocol. Thus, it is of great importance that the adversarial capabilities such 

as: the power that it possesses, its complexity and the corruption methods to be extensively explained.  

1. Corruption strategy: The adversary is capable to corrupt parties using either (a) the static corruption 

model, in which the number of the parties that it has under is influence are fixed for the entire 

execution of the protocol, or (b) the adaptive corruption model, in which the corruption of the parties 

during computation is allowed. In the second case, the adversary is enabled to choose which party 

to corrupt, and the time to do so.  
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2. Permitted adversarial behaviour: There is a case, where the adversarial actions do not aim to harm 

the other entities of the systems. In the semi-honest adversarial model, the corrupted parties, just 

like the honest, follow the protocol, but the adversary obtains the internal state of the semi-honest 

parties that has under its influence. That means that, the adversary acts as an eavesdropper in order 

to obtain private information, and thus this model is called “weak adversarial model and the 
corrupted parties are named “honest-but-curious and passive". The second and obvious case is when 

the corrupted parties act malicious and under the adversary’s instructions. Thus, it is crucial to 

provide security in the presence of malicious adversaries.  

3. Complexity: The computational complexity of the adversary is about its capability to run in 

Polynomial Probabilistic Time (PPT) or to be computationally unbounded. This distinction regarding 

the adversary yields two models for secure computation: the information-theoretic model [16], [31], 

and the computational model [62], [180]. In the information-theoretic model the adversary is not 

bound to any complexity and is not running in polynomial time but is capable to eavesdrop and 

interfere when honest parties communicate. In the other case, the adversary is assumed to be a PTT 

algorithm while, the results in the computational setting assume cryptographic assumptions such as 

trapdoor permutations. 

4.4.2.2 Feasibility of secure multiparty computation. 

The above-described properties of security are restrictive, and it seems that it is tolerated no adversarial 

behaviour. Thus, to obtain secure protocols, in the presence of adversaries, powerful feasibility results 

demonstrate that any distributed computing task can be computed securely. Denoting as 𝑚 the total number 

of the parties in a protocol, and as 𝑡 the number of the parties under the influence of the adversary: 

1. 𝑡 < 𝑚3 .  If the number of the adversaries is less than 33% of the total number of the participating 

entities in the protocol, then secure multiparty computation can be achieved, in both computational 

and information-theoretic setting, satisfying Guaranteed Output Delivery and fairness [90].  

2. 𝑡 < 𝑚2 . If the honest majority is guaranteed, then then secure multiparty computation can be 

achieved, in both computational and information-theoretic setting, supposing that the participating 

entities have access to a broadcast channel [90]. 

3. 𝑡 > 𝑚2 .  If the adversaries exceed the number of honest parties, then secure multiparty computation 

can be achieved, in the computational setting only, by assuming that the participating entities have 

access to a broadcast channel [90], and the existence of enhanced trapdoor permutations [62], [180].  

Summarizing, secure multiparty computation is feasible for any distributed task. In the computational setting 

this is possible for any number that the adversary has under its influence, but if there is no honest majority, 

then the properties guaranteed output delivery and fairness are not obtained.  

4.4.3 Homomorphic Encryption Techniques 

Before being stored to a possibly untrusted repository, private information should first be encrypted; e.g. in 

Cyber-Trust this could be smart home owner’s data that are being stored at the ISP. However, this might be 

challenging if the stored data need also be used for performing various computations in a secure manner. 

For instance, if the Cyber-Trust platform needs to perform a query about the vulnerabilities of a device and 

the data are encrypted (using an ordinary encryption scheme), then getting back meaningful results will not 

be possible without having access to the decryption key. On the other hand, if the third party is malicious or 

gets compromised and the data are not encrypted, then the attacker can easily get access.  However, many 

encryption schemes are homomorphic and allow anyone to manipulate encrypted data, even if the secret 

key is not known. Rivest Adleman, and Dertouzos are the first who posted this dilemma [142] which until 

2009 remained unsolved, where Craig Gentry introduced the Fully Homomorphic Encryption (FHE) scheme 

using ideal lattices [57] that allows outsourcing computations securely. 
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4.4.3.1  Homomorphic Encryption 

A simple example of homomorphic encryption is concatenation which entails putting two messages or even 

ciphertexts in a sequence, that is, it is possible to encrypt first and then concatenate the encrypted messages 

or to concatenate first and then encrypt the new message and the result to be the same. Although, 

concatenation is not a very interested operation, provides random computations on encrypted information 

and can answer the dilemma. In a homomorphic encryption scheme, it is necessary to perform two functions, 

which are addition and multiplication.  

4.4.3.2 Somewhat Homomorphic Encryption 

There are many partially homomorphic encryption schemes and even RSA [143], the first public key 

cryptosystem that enables the computation of the sum of two plaintexts and El Gamal’s encryption scheme 
[49] that computes a message product, belong to this category. For many years it was necessary to choose 

between addition and multiplication but these operations were not adequate for random computations. The 

first advance was to invent “somewhat homomorphic encryption” for arbitrary computations [19], but these 

encryption schemes inevitably add noise (Figure 4.4). 

 

Figure 4.4: Somewhat Homomorphic Encryption [92] 

A small amount of noise does not affect the output of the decryption but the repeated encryption of the 

plaintext may render to an undecipherable ciphertext.  To put it simply, each operation in a somewhat 

homomorphic encryption scheme comes with a cost, but for simple encryptions the noise just vanishes on 

the decryption process. The search for an encryption method that was not plagued was conducted for almost 

twenty years and various ideas were introduced until Gentry’s revolutionary insight.   

4.4.3.3 Fully Homomorphic Encryption 

Fully homomorphic encryption (FHE) scheme, means that there are no limits on the manipulations that can 

be executed. With known ciphertexts c1, . . . , ct that encrypt the messages m1, . . . , mt  under a given key and 

any computable function f, it is possible to compute a ciphertext that encrypts f(m_1, . . . , m_t). To put it 

simply, this allows general computations on encrypted data without leaking any information about the 

messages m1, . . . , mt or the value of f(m1, . . . , mt). 
The key insight behind Gentry’s idea was to invent an encryption scheme with very few operations and low 
complexity and thus the decryption process to be conducted homomorphically [58].  Such schemes are called 

“bootstrappable” [57] and the basic idea behind this technique is to eradicate the noise, by partially 

decrypting the ciphertext and re-encrypting to perform additional computations (Figure 4.5).   



 D6.1 State-of-the-art on profiling, detection and mitigation  

Copyright  Cyber-Trust Consortium. All rights reserved.   73 

 
Figure 4.5: Fully Homomorphic Encryption (FHE) [92]  

The next step is to construct a bootstrapping or refreshing process. The decryption process is performed 

homomorphically using an encrypted secret key and aims to remove the noise, but by doing so, some noise 

is also reintroduced, but less than it is removed.  Besides the fact that bootstrapping is a public operation, 

without revealing the secret key there is no concern to compromise security. The double encryption process 

is the starting point from which the noise is cleaned from the ciphertexts. It is of great importance to ensure 

that the noise does not exceed a certain threshold during homomorphic decryption for further operations to 

be allowed.  

4.4.3.4 Limitations and Generations 

Since, bootstrapping operations are very costly and ciphertexts are too large, FHE is not so practical and not 

being used widely. C. Gentry and S. Halevi, Implemented FHE ranging the size of the public key from 70 MiB 

to 2.3 GiB and the results showed that to run just a single bootstrapping operation took from 30 seconds to 

30 minutes, respectively [55]. Nevertheless, the efficiency of the implementation also presented feasibility 

and lead the first studies to focus on reducing the complexity of the scheme [20], [164], as well as the 

improvement of efficiency [BR12], [56], [21]. The latest version of Gentry scheme [59], resulted in 

improvements that enabled bootstrapping in 0.61 seconds but RSA encryption and decryption can be 

performed in less than a millisecond using the same machine. 

4.4.4 Zero-knowledge proofs  

 

Zero-knowledge (ZK) proofs [148] have a long history in cryptography, having used in several frameworks 

(see also the Deliverable D7.1). They allow a user to prove that she acquires some specific secret knowledge, 

without revealing this knowledge; more generally, an interactive proof allows a prover to convince a verifier 

that a statement is true without revealing any information other than the fact that the statement is valid. 

Therefore, zero-knowledge proofs could be considered as a private enhancing technology, since their 

inherent nature rests with revealing the least possible information.  For example, as described in [51], ZK 

proofs could be an appropriate technical solution for alleviating several privacy issues arising in a smart 

metering system; indeed, since storing and further processing of the whole customer’s profile (with respect 
to, e.g. water or electricity consumption) raises privacy concerns, a ZK proof can be used to allow the user 

prove to the service provider that all the relevant measurements have been truthfully computed – which is 

prerequisite for issuing a valid bill – without revealing the actual measurements themselves. 

A zero-knowledge proof must satisfy four properties:  
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• Completeness: if the statement is true, the honest verifier will be convinced of this fact by an honest 

prover. 

• Soundness: if the statement is false, no cheating prover can convince the honest verifier that it is 

true, except with some small probability. 

• Zero-knowledge: if the statement is true, no verifier learns anything other than the fact that the 

statement is true.  

• Polynomial verification: The verifier must do his private computation in polynomial time. 

In the traditional form of ZK proofs, an interactive approach is being followed – that is the verifier sends 

several challenges to the prover, whereas the latter provides the responses which can be computed correctly 

in case that the prover acquires a secret knowledge. More precisely, an interactive proof for a decision 

problem can be generally described as follows: 

1. There are two participants, a prover P and a verifier V 

2. The whole process (proof) consists of a well-determined number of rounds. 

3. In the beginning, both participants get the same input. 

4. In each round, the verifier challenges the prover, and the prover responds to the challenge. 

5. Both the verifier and the prover can perform some private computation  

6. In the end, the verifier states whether he is convinced or not. 

Ideally, given any input x, the following property is desirable: anything that the verifier V can compute 

efficiently after the interaction with the prover P on x, could also be computed before the interaction. To this 

end, we need to show that V could generate the same interaction (i.e. the same “dialogue”) without the 
prover’s help, and that the distribution of the generated interactions is identical to the distribution of the 

real interactions. In such a case, we refer to perfect zero-knowledge proofs. However, perfect zero knowledge 

is a very strong requirement, and therefore we might be interested in a weaker model, which can be applied 

to a wider set of problems – that is the distributions above are statistically indistinguishable (i.e., the 

statistical distance between the distributions is negligible). In such a case, we refer to almost-perfect or 

statistical zero-knowledge (while the notion of computational zero knowledge is also being used) [15].  

There are many varieties of zero-knowledge proofs. Non-interactive zero-knowledge proofs were introduced 

in [98] which was a significant improvement in terms of efficiency. However, zero-knowledge proofs have 

started to be considered more practical after subsequent works, such as [74], [136], [42], which determined 

the so-called Succinct Non-Interactive Zero Knowledge Proofs (zkSNARKs). These models allow getting proofs 

of any statement efficiently. ZkSNARKs have also described in deliverable D7.1 (Distributed Ledger state-of-

the-art report), since they fit well in blockchain applications that are being discussed therein. 

4.5 Reconstruction-Based Techniques and tools 

Some benefits of the information technologies paired with IoT devices are only possible through the 

collection and analysis of (sometimes sensitive) data. However, this may result in unwanted privacy violations 

[139]. In order to protect the owner’s exposure from information leakage, researchers proposed new 

effective data mining techniques that hide (by modifying or even removing) sensitive information from the 

original data [25, 26]. However, transforming the data may reduce its utility, resulting in inaccurate or even 

infeasible extraction of knowledge through data mining. It is obvious thus, that the balance among data 

privacy and data utility is very fragile (Figure 4.6).  
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Figure 4.6. The fragile balance among data privacy and data utility (source [68]) 

To this end, the research community designs and proposes methodologies to extract knowledge from data 

while ensuring a certain level of privacy; this paradigm is known as Privacy-Preserving Data Mining (PPDM) 

[139, 135] and comes with the following objectives: (1) hide sensitive information contained in the original 

data, (2) keep the same characteristics between hidden and original data, and (3) get the same data 

accuracy as in the original data set. Figure 4.7 schematically presents the mechanism of PPDM.  

 
Figure 4.7:  The mechanism of PPDM  
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Naturally, due to the explosion of smart devices and IoT in recent years, PPDM has drawn extensive attention 

amongst researchers, resulting in numerous techniques for privacy under different assumptions and 

conditions. The vast majority of the PPDM techniques modify or even remove some of the original data in 

order to preserve privacy [25]. This data quality degradation is the natural trade-off between the privacy level 

and the data quality, which is formally known as a utility. However, modifying or purifying data is an NP-hard 

problem. Thus privacy protection data mining algorithms apply methods of distortion [176], such as random 

perturbation, blocking, and condensation, to deal with the challenges imposed by PPDM.  

More specifically, to extract knowledge from data while preserving privacy, PPDM encompasses techniques 

that use (1) data transformation, such as additive noise [135] and multiplicative noise [76], (2) primitives for 

adjusting the privacy-utility tradeoff of more evolved data mining, such as privacy models like k-anonymity 

[126, 125], l-diversity [3] and others [114, 177, 28], and (3) the more classical data mining approaches, such 

as association rule hiding [173, 95], downgrading classifier effectiveness [25, 149], or query auditing and 

inference control [7, 115]. PPDM also accounts for distributed privacy techniques, such as homomorphic 

encryption [138, 29], or secure sum [27] and others [27, 104, 146, 106] that are employed for mining global 

insights from distributed data without disclosure of local information. Due to the variety of proposed 

techniques, several different taxonomies for PPDM methods have been proposed [25, 26, 145, 6, 97, 87], as 

well as several metrics to evaluate the privacy level and the data quality/utility of the different techniques 

[44, 145, 43, 147]. Figure 4.8 presents a classification of PPDM techniques based on the location of 

computation [6]. 

 

 
Figure 4.8: Classification hierarchy of PPDM techniques based on the location of the computation  

In this report, we are considering a classification of techniques based on the data lifecycle phase as in [26], 

at which the privacy-preservation is ensured, namely data collection, data publishing, data distribution, and 

data mining. In any of these phases, it is important to note that the techniques used must both preserve 

privacy and ensure data quality. However, even at a given data phase, there is no single optimal PPDM 

technique. The appropriate choice is often a matter of weighing the different trade-offs between the desired 

privacy level, the information loss, which is measured by data utility metrics, the complexity, and even the 

practical feasibility of the available techniques. Another aspect to take into consideration is the type of 

adversarial behaviour and the corresponding privacy breaches that can be explored. Below, we briefly 

present the different privacy-preservation techniques used considering the different phases of the data 

lifecycle.  

• Data collection. To ensure privacy at data collection time, the sensory device transforms the raw 

data by randomizing the captured values, before sending to the collector. The assumption is that the 

entity collecting the data is not to be trusted. Therefore, the original values are never stored, but 

used only in the transformation process. Consequently, randomization must be performed 

individually for each captured value. Most common randomization methods modify the data by 
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adding noise with a known statistical distribution, so that when data mining algorithms are used, the 

original data distribution may be reconstructed, but not the original (individual) values. Thus, the 

randomization process in data mining encompasses the following steps: randomization at data 

collection, distribution reconstruction (subtracting the noise distribution from the first step) and data 

mining on the reconstructed data [26].  Since the original data is modified into perturbed data, 

specific data mining algorithms, such as clustering and classification,(that can leverage knowledge 

discovery from distributions of data and not from individual entries) are required [26]. 

• Data publishing. Entities may wish to release data collections either publicly or to third parties for 

data analysis without disclosing the ownership of the sensitive data. In this situation, sensitive 

attributes are person-specific private attributes that should not be publicly disclosed (e.g. diseases in 

medical records) and thus, preservation of privacy may be achieved by anonymizing the records 

before publishing. The anonymization of records in a database is possible by implementing different 

privacy models, which attempt to preserve records’ owner identity by applying one, or a combination 
of the following data sanitizing operations: (1) replacement of a value for a more general one 

(parent), (2) removal of some attribute values to prevent information disclosure, (3) de-association 

of quasi-identifiers(QIDs) and sensitive attributes in two separate tables making it more difficult to 

link QIDs to sensitive attributes, (4) replacement of the original data for synthetic values with 

identical statistical information. Based on these operations, a set of privacy models, such as k-

anonymity [126, 125], l-diversity [3], R-susceptibility [79] and other techniques [114-28], has been 

proposed. 

• Data distribution. There are situations where multiple entities seek to mine global insights (in the 

form of aggregate statistics) over the conjunction of all (partitioned) data, without revealing local 

information to the other entities, which may be possible adversaries. A generalization of this problem 

is the well-studied secure multiparty computation (SMC) problem from the cryptography field [117]. 

In such a distributed scenario, a dataset may be partitioned either horizontally or vertically. In the 

horizontal case, each entity contains different records with the same set of attributes, and the 

objective is to mine global insights about the data. For example, consider a hospital with different 

departments, where each department has different patients, and the attributes associated with each 

patient are common to all departments, such as type of disease and client’s QID. In vertically 
partitioned datasets, entities contain records with different attributes pertaining to the same 

identity. The junction of the dataset in this case allows to infer knowledge that could not be obtained 

from the individual datasets; stores with complementary items may be sequentially visited by the 

same clients, thus creating patterns that would not exist in each store’s database. Distributed 
privacy-preserving algorithms, such as homomorphic encryption [138, 29], secure sum [27], or other 

techniques [27, 104, 146, 106], exist for both types of partitioning.  

• Data mining. The outputs of the data mining algorithms may be extremely revealing, even without 

explicit access to the original dataset. An adversary may query such applications and infer sensitive 

information about the underlying data. The most common techniques to preserve privacy to the 

output of the data mining are association rule hiding [173, 95], downgrading classifier effectiveness 

[25, 149], and query auditing and inference control [7, 115]. Note that in all these methods, the 

application may be affected: if the utility of the data used to build the application is lower than the 

original value of the data, the application itself is downgraded, or the access to the data is restricted. 

Thus, when building an application, one has to choose the technique that best fits his requirements 

considering that the trade-off between privacy and utility is always present. 
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5. Conclusion 

This deliverable performed a thorough review of the current state-of-the-art in Cyber-Trust’s profiling, 
detection and mitigation, namely IoT devices profiling methods, state of the art in malware detection and 

mitigation, as well as the quest for privacy in the IoT. The main findings of this report are summarized below:  

 

• IoT devices are considered not only a security threat, but also the main privacy disquiet, as these 

devices gather plenty of personal data, for example, user identity, location, energy consumption, and 

telephone numbers. In this case, a lot of sensitive, important, and private information can be 

disclosed about the daily life activities of the users including using washing machines, watching TV, 

and leaving or returning home. 

Furthermore, these devices not only can gather users’ private data but also can control their 
environments, and this fact represents the key concern. Thus, users are highly uncomfortable 

revealing personal data to public or private servers without a well-established trust model. 

Therefore, the lack of any well-designed IoT-oriented privacy and security techniques will prevent 

user adoption to any IoT technology. 

• IoT devices create a complex set of network behaviours both locally and across the internet. A lack 

of agreed standards and the fact manufacturers have yet to sign up to the IETF MUD standard means 

that network security has to be driven by the Cyber-Trust platform alone rather than in concert with 

manufacturers. Open-source applications such as MUDgee and SiLK allow Cyber-Trust to do this, 

creating comprehensive network flow profiles, while additional capabilities such as IPS (dealt with 

separately in this document) can be run locally on the gateway and within the cloud depending on 

computational demands. IoT devices expose thousands of ports to arbitrary local endpoints within a 

smart home, and remote elements over the internet. This creates a large state space within which to 

conduct profiling and analysis operations that are timely, accurate and within the bounds of available 

resources.  

• The use of protocols such as MUD enable Cyber-Trust to enhance device network behaviours, and 

there is a natural synergy between device and network at this point to enable a mutually-beneficial 

enhancement to both network and device monitoring. However, MUD only goes so far, and especially 

with complex devices like the Amazon Echo, or STUN protocol-based IoT devices like IP cameras, 

there is a necessity to focus attention and development activities to defining how behavioural 

profiles can be determined that can feed capabilities such as anomaly-based IPS and even raw ICMP 

alerts with a high degree of accuracy. Flow relationships and associated clustering activities are useful 

techniques for rendering intelligible the complexity of an IoT network within the paradigm of the IP 

infrastructure, however, there remains the hard constraint of computational resources and this will 

be expanded upon as development activities begin. 

• Intrinsically malware is a malicious piece of software design by malware authors with the intention 

to destroy, destruct and damage the normal functionality of Information Systems. It has become the 

most disastrous and pernicious cyberweapon like never before and with the passage of the time, 

there is a major increase in the development of malware and its complexity. Currently, there is a 

drastic rise in the production of malware variants, with an exponential increase in the power shell 

malware. 

• IoT is a multi-domain technology with a network of devices and services to exchange information. 

Each domain can apply its security, privacy, and trust requirements. The privacy-preserving data 

mining techniques, propose the setup for minimizing the risks of revealing sensitive information and 

offer sensitive content analysis. It introduced some of the privacy and security issues in IoT 

technological aspects. Although an abundance of research has already been proposed concerning 

privacy, many topics still need further investigation. Privacy in data collection, as well as data sharing 

and management, and data security matters remain open research issues to be fulfilled. 
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• Privacy is a concern, user-names, hostnames, IP addresses are all privacy-sensitive user identifiers, 

and even non-identifying fields such as time-stamps, URLs, Payloads and attack signatures can be 

considered as privacy-sensitive even though they are not user identifiers in themselves. To counter 

this, hash-functions, homomorphic encryption, perturbation and more are all techniques that can be 

employed within the gateway and cloud capabilities to preserve user privacy, however proper 

assessment needs to be made of the effects of privacy-preservation techniques on the flow, packet 

and deep packet inspection analysis techniques before architectural integration into the network can 

occur, i.e. if a chosen technique obfuscated ports or destination IPs does that affect the ability to 

properly measure behaviour and so anomalous activity. 
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