

Advanced Cyber-Threat Intelligence, Detection, and
Mitigation Platform for a Trusted Internet of Things
Grant Agreement: 786698

D5.3 - CYBER-TRUST proactive
technology tools

Work Package 5: Key proactive technologies
cyber-threat intelligence

Document Dissemination Level
P Public �M

CO Confidential, only for members of the Consortium (including the Commission Services)

Document Due Date: 31/01/2020
Document Submission Date: 31/01/2020

Co-funded by the Horizon 2020 Framework Programme of the European Union

Ref. Ares(2020)637903 - 01/02/2020

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 2

Deliverable Information Sheet

Document Information

Deliverable number: D5.3
Deliverable title: CYBER-TRUST proactive technology tools
Deliverable version: V1.0
Work Package number: WP5
Work Package title: Key proactive technologies and cyber-threat intelligence
Due Date of delivery: 31/01/2020
Actual date of delivery: 31/01/2020
Dissemination level: Public
Editor(s): Stefano Cuomo, Simone Naldini (Mathema)
Contributor(s): Nicholas Kolokotronis, Costas Vassilakis, Christos Tryfonopoulos,

Konstantinos�tPanagiotis Grammatikakis, Ioannis Koyfos, George
Pikramenos, Christos�tMinas Mathas, Paris Koloveas (UOP)

Reviewer(s): Clément Pavué (SCORECHAIN)
Gohar Sargsyan, Raymond Binnedijk (CGI)

Project name: Advanced Cyber-Threat Intelligence, Detection, and Mitigation
Platform for a Trusted Internet of Things

Project Acronym Cyber-Trust
Project starting date: 1/5/2018
Project duration: 36 months
Rights: Cyber-Trust Consortium

Version History

Version Date Beneficiary Description
0.1 25/11/2019 Mathema, UOP Table of contents and

distribution of work
0.2 06/12/2019 Mathema, UOP Table of contents has

been finalised
0.3 20/12/2019 UOP The eVDB short descrip-

tion is provided
0.4 06/01/2020 UOP The crawler component

has been described
0.6 10/01/2020 UOP The TMS component has

been described
0.8 17/01/2020 UOP The iIRS component has

been described
0.9 20/01/2020 Mathema, UOP Consolidation of the

document
1.0 28/01/2020 Mathema Version ready for review
1.1 Final 31/01/202 Mathema Final Version

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 3

Acronyms
ACRONYM EXPLANATION

A Actor

AMPQ Advanced Message Queuing Protocol

APIs Application Programming Interface

AS Autonomous System

CIDR Classes Inter-Domain Routing

CT Cyber-Trust

CTI Cyber-Threat Intelligence

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerabilities Scoring System

D Deliverable

DB Database

eVDB Enriched Vulnerability Database

FR Functional Requirement

GUI Graphic User Interface

ID Identification

IDS Intrusion Detection System

iRC iIRS Client

iRE iIRS Decision-making Engine

iRG iIRS Attack Graph Generator

iIRS Intelligent Intrusion Response

IoC Indicator of Compromise

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

LCPD Local Conditional Probability Distribution

M Month

MISP Malware Information Sharing Platform

NFR Non-Functional Requirement

REST Representational State Transfer

SQL Structured Query Language

T Task

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 4

TMS Trust Management Service

UI User Interface

URL Uniform Resource Locator

VM Virtual Machine

WP Work Package

XML Extensible Markup Language

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 5

Executive summary
This report is a contractual deliverable within the Horizon 2020 Project Cyber-Trust: Advanced Cyber-Threat

Intelligence, Detection, and Mitigation Platform for a Trusted Internet of Things. It provides detailed

�����•���Œ�]�‰�š�]�}�v�� �}�(�� �š�Z���� �Œ���•�µ�o�š�•�� �}�(�� �š�Z���� �š���•�l�� �d�ñ�X�ð�� �^���Ç�����Œ-�d�Œ�µ�•�š�� �W�Œ�}�����š�]�À���� �š�����Z�v�}�o�}�P�Ç�� �š�}�}�o�•�_�� �Œ���o���š������ �š�}�� �š�Z����

implementation of the tools of work package and according to the platform architecture as described in D4.4

[3].

This document provide a a technical documentation of the prototype implementing the algorithms and

methods related to the key technology used for the pre-reconnaissance cyber-threat intelligence. The main

tools here described are Crawling service module, the Enriched vulnerability database (EVDB), the Trust

management service and the Intelligent Intrusion Response (iIRS) which aim at improving the security of the

Cyber-Trust platform through the collection and aggregation of data and information from multiple sources.

The ultimate goal of the presented tools is to make the IoT devices network safer by preventing cyber-attacks

whenever possible, and aiming to mitigate the effects of unpredictable attacks.

Further to a general overview or each of these tools detailed information are given about technical details

such as, for instance, Functionality Coverage, Application and Physical Architecture, Application

programming interfaces and Technology stack. A final chapter present the unit test approach is present to

verify that the individual artefacts comprising the software component operate as expected.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 6

Table of Contents

1. Introduction ... 10

1.1 Purpose of the document .. 10

1.2 Relations to other activities in the project .. 10

1.3 Structure of the document .. 10

2. Crawling service .. 12

2.1 Overview / objectives .. 12

2.2 Functionality coverage .. 12

2.2.1 Related requirements .. 12

2.2.2 Related use cases .. 13

2.3 Technology update .. 14

2.4 Application architecture .. 14

2.5 Application programming interfaces ... 16

2.6 Technology Stack ... 16

2.6.1 ACHE Crawler ... 16

2.6.2 MongoDB, MongoExpress ... 16

2.6.3 Gensim Toolkit - Word2Vec ... 16

2.6.4 Privoxy (TOR proxying) .. 17

2.6.5 SpaCy (Named Entity Recognition) .. 17

2.6.6 Python 3.6.. 17

2.6.7 Docker.. 17

2.7 Physical architecture ... 17

2.8 User Interface .. 17

3. Enriched vulnerability database .. 19

4. Trust management service .. 20

4.1 Overview / objectives .. 20

4.2 Functionality coverage .. 20

4.2.1 Related requirements .. 20

4.2.2 Related use cases .. 22

4.3 Technology update .. 23

4.4 Application architecture .. 23

4.5 Application programming interfaces ... 24

4.5.1 REST APIs for managing device trust ... 24

4.5.2 REST APIs for managing peer TMSs ... 25

4.5.3 REST APIs related to risk management ... 25

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 7

4.5.4 REST APIs related to trusted user management ... 25

4.6 Technology Stack ... 26

4.7 Physical architecture ... 26

4.8 User Interface .. 27

5. Intelligent intrusion response.. 28

5.1 Overview / objectives .. 28

5.2 Functionality coverage .. 28

5.2.1 Related requirements .. 28

5.2.2 Related use cases .. 30

5.3 Technology update .. 31

5.3.1 Attack Graph Generation Tool Comparison .. 32

5.3.2 Active Mitigation Action Calculation ... 35

5.3.3 Risk Analysis ... 36

5.3.4 Optimal decision-making ... 38

5.4 Application architecture .. 38

5.4.1 High-level architecture .. 38

5.4.2 Data-centric architecture .. 39

5.4.3 Remediation DB ... 40

5.4.4 iIRS Attack Graph Generator (iRG) Server ... 42

5.4.5 iIRS Decision-making Engine (iRE) Server .. 42

5.5 Application programming interfaces ... 44

5.5.1 iIRS Attack Graph Generator (iRG) .. 44

5.5.2 iIRS Decision Making Engine (iRE) ... 48

5.6 Technology Stack ... 48

5.7 Physical architecture ... 50

5.7.1 iRG Docker Images ... 50

5.7.2 iRE Docker Images ... 51

5.8 User Interface .. 51

6. Unit testing approach ... 57

6.1 Unit tests for the REST API layer .. 57

6.2 Unit tests for the service layer .. 58

6.3 Unit tests for the domain layer ... 58

6.4 Unit tests for the persistence layer ... 58

6.5 Unit tests for the asynchronous communication layer ... 58

7. Conclusions .. 59

8. References ... 60

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 8

Table of Figures

Figure 2-1: Crawling Service architecture (including details on the different modules) 15

Figure 2-2. Monitoring of an ACHE crawl (visualization of the REST API) ... 18

Figure 2-3. Visualization of the crawler in Cyber-Trust platform. ... 18

Figure 4-1. TMS high-level design.. 23

Figure 4-2. TMS data view ... 24

Figure 5-1. Initial tree generated by the remediation generation algorithm ... 36

Figure 5-2. Simplified tree generated after the pruning and collapsing process .. 36

Figure 5-3. An example of a Bayesian attack graph .. 37

Figure 5-4. Architecture of the iIRS component .. 39

Figure 5-5. Data-centric view of the iIRS component .. 39

Figure 5-�ò�U���,�]�P�Z���o���À���o�����]���P�Œ���u���}�(���š�Z�����]�Z���[�•���]�v�š���Œ�����š�]�}�v�•���Á�]�š�Z���}�š�Z���Œ�����}�u�‰�}�v���v�š�• ... 42

Figure 5-7. iRG Client �t the initialization page .. 52

Figure 5-8. iRG Client �t the configuration page .. 52

Figure 5-9. iRG Client �t the topological view of the attack graph page .. 53

Figure 5-10. iRG Client �t the topological view of the attack graph page .. 53

Figure 5-11. iRG Client �t the attack path page .. 54

Figure 5-12. iRG Client �t the suggested remediation actions ... 54

Figure 5-13. The dedicated user interface of the iRE client .. 55

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 9

Table of Tables

Table 2-1: Functional requirements and use-case references .. 12

Table 2-2. Non-functional requirements and use-case references ... 13

Table 2-3. Use-cases related to the crawling service (A10) .. 13

Table 2-4. REST APIs for managing the ACHE crawler ... 16

Table 4-1. Functional requirements and use-case references for the TMS .. 20

Table 4-2. Non-functional requirements and use-case references for the TMS ... 22

Table 4-3. Use-cases related to the TMS ... 22

Table 4-4. REST APIs for managing device trust .. 24

Table 4-5. REST APIs for managing peer TMS instances .. 25

Table 4-6 REST APIs related to risk management.. 25

Table 4-7. REST APIs related to trusted user management .. 25

Table 4-8. Technology stack and applied tools used for the implementation of the TMS 26

Table 5-1. Functional requirements and use-case references for the iIRS ... 28

Table 5-2. Non-functional requirements and use-case references for the iIRS .. 30

Table 5-3. Use-cases related to the iIRS .. 30

Table 5-4. Comparison of rules used in the attack graphs. ... 32

Table 5-�ñ�X���d�Z�����^�À�µ�o�v���Œ�����]�o�]�š�Ç�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������ .. 40

Table 5-�ò�X���d�Z�����^���À�•�•�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������ ... 41

Table 5-�ó�X���d�Z�����^patches�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������ ... 41

Table 5-8. Generic header information in Cyber-Trust asynchronous messages ... 44

Table 5-9. iIRS specific header information in Cyber-Trust asynchronous messages 45

Table 5-10. The REST API calls supported by the iRG .. 46

Table 5-11. The REST API calls supported by the iRE .. 48

Table 5-12. Technology stack used in iIRS ... 48

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 10

1. Introduction

1.1 Purpose of the document
The main objective of this deliverable is to provide a technical documentation of the prototype implementing
the algorithms and methods related to the key technology used for the pre-reconnaissance cyber-threat
intelligence.

In particular, the content of the deliverable includes details about the Crawling service module, the Enriched
vulnerability database (EVDB), the Trust management service and the Intelligent Intrusion Response (iIRS).

The main objective of these tools is to improve the security of the Cyber Trust platform, through the
collection and aggregation of multiple data and information from different sources.

Deepnet web forums or marketplaces and clearnet social platforms can be identified among these sources.
The collection of information is aimed at identifying and previously mitigating threats to IoT devices.

The methods available to accomplish this goal are the search (supervised and unsupervised) of social
networks, forums or marketplaces that may contain information regarding possible threats; the use of
classification and characterization methods to evaluate the threats found, and the ranking of the identified
threats.

The ultimate goal is, through further data processing, and a careful evaluation of the methods of presenting
the results, to make the IoT devices network safer by preventing cyber-attacks whenever possible and aiming
to mitigate the effects of unpredictable attacks.

1.2 Relations to other activities in the project
The deliverable is mainly linked to task 5.1 (Threat intelligence techniques) 5.2 (Trust establishment and risk
assessment) and which are summarized in deliverable 5.1 (State-of-the-art on proactive technologies). Given
the importance of the graphic representation and the proposal to the user, the deliverable is also linked to
D6.3 (Cyber-Trust Network tools) and D6.4 (Cyber-Trust visualization tool).

1.3 Structure of the document
The document is structured in order to describe the components related to the key proactive technologies
used in the Cyber-Trust platform. In particular:

1. Crawling service

2. Enriched Vulnerability DataBase (EVDB)

3. Trust Management Service

4. Intelligent Intrusion Response

For each of these components, information will be given about:

�x A general overview

�x Functionality Coverage

�x Application Architecture

�x Application programming interfaces

�x Technology stack

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 11

�x Physical Architecture

�x User Interface (where relevant)

A chapter about the unit test approach is present to verify that the individual artefacts comprising the
software component operate as expected.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 12

2. Crawling service

2.1 Overview / objectives
The Crawling Service component lies at the core of the cyber-threat intelligence gathering envisioned by
Cyber-Trust. It is responsible for:

�x Collecting public cyber-threat intelligence information from the social/clear/deep/dark web,
including related forums, marketplaces and security-related websites.

�x leveraging the collected information to identify emerging threats, zero-day vulnerabilities and new
exploits to IoT devices.

�x Making the leveraged information available to the rest of the Cyber-Trust platform by storing it in
the eVDB.

To do so it utilizes an ensemble of state-of-the-art data processing and machine learning techniques to
identify the web pages that should be crawled and to extract/contextualize all relevant threat information.
The Crawling Service also offers a user interface, through which the crawling process can be supervised,
managed and tuned. It interacts only with the eVDB Sharing Service, which is used for storing and sharing of
the actionable intelligence that has been discovered.

2.2 Functionality coverage

2.2.1 Related requirements

Error! Reference source not found. lists the functional requirements related to the Crawling Service and the
provisions made by the component to support the fulfilment of these requirements.

Table 2-1: Functional requirements and use-case references

REF_ID Description of implementation Use Case

FR78 Requirement: Specific user (based on access role) will be able to configure
���Œ���Á�o���Œ�[�•���‰���Œ���u���š���Œ�•���~�^�d�µ�v�������Œ���Á�o�]�v�P�_���(�µ�v���š�]�}�v���o�]�š�Ç�•�X

Implementation: The crawler accepts parameter modification either as
standalone user input or via modifying appropriate setup files that are
subsequently accessed by the component. The user input may be provided via
a dedicated GUI, or by direct access to the appropriate files. Access control is
performed by another component (A06).

UCG-16-05
UCG-19-04

FR84 Requirement: The user (based on access role) will supervise the cyber-threat
discovery in order to add new (after proper evaluation), update existing and
approve crawling new seeds.

Implementation: The crawler uses a machine-learning model to extract
features from the submitted seeds and create an appropriate model that is
used to guide the crawling. Addition of new seeds and/or modification of
existing ones causes an update to the crawler model and may thus be used to
direct the focused crawl. The user input may be provided via a dedicated GUI,

UCG-19-04

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 13

or by direct access to the appropriate seed files. Access control is performed
by another component (A06).

Table 2-2 lists the non-functional requirements related to the Crawling Service and the provisions made by
the component to support the fulfilment of these requirements.

Table 2-2. Non-functional requirements and use-case references

REF_ID Description of implementation Use Case

NFR26 Requirement: �d�Z���� �‰�o���š�(�}�Œ�u���u�µ�•�š���Z���À�����^�Z���š���� �•�������•�_���(�µ�v���š�]�}�v���o�]�š�Ç���]�v���}�Œ�����Œ��
for the respective user to rate the crawling seeds.

Implementation: Seeds may be added or removed as appropriate to modify
the machine-learning model that is used to guide the crawling; these
operations provide a seed rating mechanism that reinforces the crawling
model accordingly.

UCG-06-06

NFR44 Requirement: The crawler will be able to crawl the clear, deep and dark
web.

Implementation: A common crawler infrastructure is used for accessing
clear, deep and dark web; specialised components are utilised for TOR
proxying, authorization management, form interaction, and other more
specialised tasks required.

UCG-16-05

NFR45 Requirement: The crawler will continuously crawl popular social media
streams, popular security-related websites and deep/dark web forums and
marketplaces.

Implementation: The crawler frontier is maintained in-memory for
efficiency reasons and is enriched by adding new URLs as it visits new
websites; periodically the frontier is persisted to ensure fault-tolerance and
assert continuous operation. Focused versions of the crawler are meant for
continuous exploration of the web, while in-depth versions may be launched
to harvest content (by resorting to link filtering) from the social, deep and
dark web.

UCG-16-05

2.2.2 Related use cases

Table 2-3 lists the use cases related to the Crawling Service and the provisions made by the component to
support the fulfilment them.

Table 2-3. Use-cases related to the crawling service (A10)

REF_ID Description of implementation

UCG-06-06 Use case: Provide feedback/rating on sources of vulnerabilities

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 14

Implementation: Seeds may be added or removed as appropriate (by expert users) to
modify the machine-learning model that is used to guide the crawling; these operations
provide a seed rating mechanism that reinforces the crawling model accordingly.

UCG-16-05 Use case: Crawl the clear/deep/dark web and update the eVDB

Implementation: The crawling service continuously crawls popular social media streams,
popular security-related websites and deep/dark web forums and marketplaces. Cyber-
threat information on 0-day vulnerabilities, exploits, signatures, executables, and other
related information is sought. The collected data use appropriate references to eVDB objects
to update the eVDB component.

UCG-19-04 Use case: Tune the crawling parameters and evaluate existing seeds

Implementation: The expert user supervising the crawling service can add, annotate, and
approve the crawling of new seeds (i.e., websites of interest), tune the parameters that
���v�����o�����š�Z���]�Œ�����]�•���}�À���Œ�Ç�����v���������i�µ�•�š�����Œ���Á�o���Œ�[�•���‰���Œ�(�}�Œ�u���v�����U�����v�������À���o�µ���š�����š�Z�������Æ�]�•�š�]�v�P���•�������•���]�v��
terms of usefulness.

2.3 Technology update
The Cyber-Trust Crawling Service extends the current paradigms and implementations in a variety of domains
including thematical and focused crawling, post classification, natural language understanding, and entity
extraction by considering additional dimensions (e.g., multi-stage post classification) and functionality (e.g.,
integrated thematic and focused crawling). Moreover, the integrated services that are offered and their
seamless orchestration, create a novel framework that is able to fully support the cyber-threat intelligence
lifecycle through:

�x thematic and in-depth crawling of relevant sites in the social/clear/deep/dark web driven by
advanced machine learning models to direct the crawl for higher efficiency,

�x state-of-the-art classification of collected pages that works in tune with the thematic crawling for
higher effectiveness,

�x highly scalable, modern, NoSQL solution for storage of all relevant data,

�x a combination of rule- and machine learning-based natural language understanding for leveraging
the collected data to information.

2.4 Application architecture
The crawler architecture (illustrated in Error! Reference source not found.) consists of three major
components:

�x the crawling module (blue part),

�x the content ranking module (red part), and

�x the information extraction module (purple part).

The proposed architecture has been entirely designed on and developed using open-source software; it
employs an open-source focused crawler, an open source implementation of word embeddings for the latent
topic modelling, open-source NoSQL database storage for all persistent data, and an open-source natural
language understanding engine.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 15

Figure 2-1: Crawling Service architecture (including details on the different modules)

The idea behind this modular architecture and a multi-stage framework approach is attributed to the
openness of the topic at hand and is briefly outlined below.

�x The crawling module harvests content from a variety of CTI sources in the clear, social, and deep/dark
web by employing a thematically focused crawler to direct the crawl towards websites of interest to
the CTI gathering task. This is realized by resorting to a combination of machine learning techniques
(for open domain crawl) and regex-based link filtering (for structured domains like forums).

�x The harvested content is stored in an efficient NoSQL datastore and is retrieved for further inspection
in order to decide its usefulness to the task. This is achieved by employing statistical language
modelling techniques to represent all information in a latent low-dimensional feature space and a
ranking-based approach to the collected content (i.e., rank it according to its potential to be useful).
These techniques allow us to train our language model to

o capture and exploit the most salient words for the given task by building upon user
conversations

o compute the semantic relatedness between the crawled content and the task at hand by
leveraging the identified salient words, and

o classify the crawled content according to its relevance/usefulness based on its semantic
similarity to CTI gathering.

Notice that the post-mortem inspection of the crawled content is necessary, since the thematically focused
crawl is forced to make a crude decision on the link relevance (and if it should be visited or not) since it resorts
on a limited feature space (e.g., alt-text of the link, words in the URL, or relevance of the parent page).

�x The identified relevant content is then analysed using advanced natural language understanding
methods to perform named entity recognition for entities that are of interest (i.e., cyber-threat
intelligence). These methods employ sets of annotated entity data such as malware names, product
names, CVEs, etc., to facilitate named entity recognition, entity/concept linking and open
information extraction.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 16

2.5 Application programming interfaces
The ACHE Crawler exposes a REST API (see Table 2-4), which can be used to perform operations on active
crawls, extract relevant metrics and monitor the progress of each crawl in real time.

Table 2-4. REST APIs for managing the ACHE crawler

API URL specification Description Input Variables

POST
/crawls/{crawler_id}/startCrawl

Create and start a new crawler. CrawlType: The type of
crawl

Seeds: A list of seed URLs

POST /crawls/{crawler_id}/seeds Add seeds to an existing selected
classifier.

Seeds: A list of seed URLs

GET /crawls/{crawler_id}/status Returns the status of the selected
crawler.

-

GET /crawls/{crawler_id}/metrics Returns the metrics of the selected
crawler. Part of those metrics can be
seen in Figure XX.

-

GET
/crawls/{crawler_id}/stopCrawl

Stops the selected crawler. -

2.6 Technology Stack

2.6.1 ACHE Crawler

ACHE is a focused web crawler that harvests web pages satisfying specific criteria; it differs from generic
crawlers due to the use of page classifiers that allow it to distinguish between relevant and irrelevant pages.
Page classifiers may be regular expressions or a machine-learning-based classification models and allow ACHE
to prioritize links in order to efficiently locate relevant content while avoiding the retrieval of irrelevant pages.

2.6.2 MongoDB, MongoExpress

MongoDB is a general-purpose NoSQL document database that stores data in JSON-like documents; this
design provides implementation simplicity, model expressivity and a natural adaptation to the data at hand
over the typical row/column model. MongoExpress is a web-based MongoDB admin interface where we can
explore our stored data and perform actions such as simple and advanced querying, deleting, sorting and
editing each individual document, etc.

2.6.3 Gensim Toolkit - Word2Vec

A set of language modeling and feature learning techniques in natural language processing where words or
phrases from the vocabulary are mapped to vectors of real numbers; they essentially refer to distributed
representations of text in an n-dimensional space. This is a popular domain adaptation technology that allows
machine learning models to map niche datasets that are all written in the same language but are still
linguistically different.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 17

2.6.4 Privoxy (TOR proxying)

Privoxy is a non-caching web proxy with advanced filtering capabilities for enhancing privacy, modifying web
page data and HTTP headers, controlling access, and removing ads and other obnoxious Internet junk. Privoxy
has a flexible configuration and can be customized to suit individual needs and tastes. It has application for
both stand-alone systems and multi-user networks.

2.6.5 SpaCy (Named Entity Recognition)

Named-entity recognition (or entity identification, entity chunking, entity extraction) is a subtask of
information extraction that seeks to locate and classify named entity mentions in unstructured text into pre-
defined categories. For our purpose such categories may include organizations, malware, exploits, IP
locations, temporal expressions, monetary values (usually in bitcoin), and others.

2.6.6 Python 3.6

Python is a widely used high-level programming language, mainly used for data manipulation and analytics
tasks. Notable Python libraries used for the implementation are: Numpy, NLTK, Gensim, BS4 (BeautifulSoup),
Newspaper3k, Boilerpipe3 and SpaCy.

2.6.7 Docker

Docker is a tool designed to create, deploy, and run applications in the form of containers. With containers
we can package up an application with all the parts it needs, such as libraries and other dependencies, and
ship it all out as one package. With this form of deployment, the application can run on any other Linux
machine regardless of any customized settings that machine might have that could differ from the machine
used for writing and testing the code.

2.7 Physical architecture
The physical architecture of the Crawling Service is comprised of several Docker containers, orchestrated by
a Bash script. Specifically, there are different docker containers for:

�x the crawler module
�x the content parser sub-module
�x the content ranking module
�x the named entity recognition module

The number of crawler containers may vary, depending on the number of website-specific crawlers that have
been created. The containers are activated in the order that they were presented above, with a varying time
delay between each activation, which allows the previous container to sufficiently complete its function.

2.8 User Interface
The ACHE Crawler admits a monitoring dashboard, a snapshot of which can be seen in Figure 2-2, to allow
the user to monitor the progress of each crawl in real time.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 18

Figure 2-2. Monitoring of an ACHE crawl (visualization of the REST API)

The display of data from the Crawling service is proposed to Cyber-Trust users through the UI (see Figure
2-3), using ad hoc charts and graphs, aimed at improving the readability of the data.

Figure 2-3. Visualization of the crawler in Cyber-Trust platform.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 19

3. Enriched vulnerability database
The Enriched Vulnerability Database (eVDB) is a core component of Cyber-Trust (CT) platform that is actually
comprised of two parts: the eVDB admin module [A07] and the sharing service [A09]. The eVDB admin
module is responsible for the usage and maintenance of the database that stores enriched data about the
vulnerabilities, exploits, etc., that are collected through CTI techniques [15]. The eVDB sharing services link
the eVDB to Cyber-Trust registration portal [A06] and in principle with the rest of the components that
require up to date information about cyber-threat intelligence. It also enables the dissemination of results
and information regarding vulnerabilities, exploits, cyber-attacks, etc. with affiliate members and individuals.

The implementation details of the eVDB component, namely the functionality coverage (incl. requirements
and use cases), technology update, application architecture, application programming interfaces, technology
stack, physical architecture, and user interface, are described in detail in deliverable D5.2.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 20

4. Trust management service

4.1 Overview / objectives
The objective of the trust management service [A05, A08] is to serve an authority within the Cyber-Trust
architecture which undertakes the following tasks:

�x Consolidates observations on the status, behaviour and associated risk of devices into a
comprehensive trust score, which indicates the degree to which each device is deemed to be
trustworthy.

�x Can be queried by other Cyber-Trust entities to provide the abovementioned assessments, for the
perusal of the entities. Indicatively, trust assessments can be used for the visualization of trust within
the network, for making decisions whether actions originating from or being directed to some device
should be allowed or not, for raising alerts to security officers and so forth.

�x Provides timely notifications to other entities within the Cyber-Trust platform to alert them of
noteworthy events related to the level of trust associated with devices. In particular, demotions of
device trust level below some threshold and the restoration of previously demoted trust of devices
are emitted, allowing relevant components of the Cyber-Trust platform to take appropriate actions,
such as enabling or disabling defense mechanisms.

4.2 Functionality coverage

4.2.1 Related requirements

The TMS is involved in a number of scenarios of the Cyber-Trust platform, where the trust level of one or
more devices needs to be reassessed or consulted. In more detail, the TMS is involved in the following
scenarios:

�x Monitoring and vulnerability assessment: when a device is found to deviate from normal behavior
(or return to it after a period of deviation), or be vulnerable to new threats, the TMS triggers the
�Œ�����}�u�‰�µ�š���š�]�}�v���}�(���š�Z���������À�]�����[�•���š�Œ�µ�•�š���o���À���o�X

�x Network-level attacks: when a network-level attack is identified, the TMS exploits the information
provided by the iIRS to adjust the trust value of involved devices.

�x Device-level attacks: Similarly, when a device is involved in some attack, the TMS arranges for
recomputing the trust level associated with the device.

These user scenarios have co-shaped a number of functional and non-functional requirements. The relevant
functional requirements are described in Table 4-1, while the associated non-functional requirements are
described in Table 4-2.

Table 4-1. Functional requirements and use-case references for the TMS

REF_ID Description of implementation Use Case

FR9 Requirement: Every device connected to the Cyber-Trust platform has
visual representation of the Trust level (scoring) before the identification of
abnormal behavior (e.g. cyber-attack)

UCG-05-07,
UCG-05-05

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 21

Implementation: The TMS underpins this requirement by providing the
trust level of the device to the visualization module.

FR10 Requirement: Every device connected to the Cyber-Trust platform has
visual representation of the Trust level (scoring) during abnormal behavior
(e.g. cyber-attack)

Implementation: The TMS underpins this requirement by providing the
trust level of the device to the visualization module. The trust assessment is
updated synchronously as new data are received by the TMS, therefore the
visualization will reflect the evolution of the trust level.

UCG-05-07,
UCG-05-05

FR11 Requirement: Every device connected to the Cyber-Trust platform has
visual representation of the Trust level (scoring) after the mitigation of any
abnormal behavior (e.g. cyber-attack). The TMS underpins this requirement
by providing the trust level of the device to the visualization module. The
trust assessment is updated synchronously as new data are received by the
TMS, therefore the visualization will reflect the evolution of the trust level.

Implementation: The TMS underpins this requirement by providing the
trust level of the device to the visualization module.

UCG-05-07,
UCG-05-05

FR21 Requirement: The user will be informed for the importance of the alert
based on the overall Score of the device (it will be derived based on the
abnormal behavior, detected vulnerabilities etc.)

Implementation: The TMS sends notifications when the trust level of device
is demoted beyond a certain threshold or restored. These notifications may
be exploited by other components, notably visualization and user
notification modules, to appropriately convey the information to the user.

UCG-06-01,
UCG-06-02,
UCG-13-01,
UCG-16-03

FR69 Requirement: The administrator (Trust DB) will be able to update the Trust
score of a device manually. The update will include at least three options:
Change status, Delete, Take offline. Field for additional information will be
provided (e.g. comments).

Implementation: A relevant API is provided, allowing authorized users to
explicitly set the trust level of the device. Explicitly set trust levels are not
directly modified by the trust score update procedure, however major
discrepancies between explicitly set and computed scores will raise alerts.

UCG-10-04

FR73 Requirement: The user will be able to request (through the UI) the trust
level of specific device(s)

Implementation: The TMS provides an API through which authorized
entities can retrieve the trust score of a device.

UCG-13-01

UP_FR8 Requirement: For each device users are going to visualise the reason for a
certain Trust Level Score.

Implementation: The TMS API will return, upon request, the base data that
contributed to the shaping of the reported trust level.

UCG-13-01,
UCG13-02

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 22

Table 4-2. Non-functional requirements and use-case references for the TMS

REF_ID Description of implementation Use Case

NFR43 Requirement: Prioritization of cyber-threats: the threats are ordered in
descending order of their score. The score will derive based on vulnerability
and impact attributes (technical impact, exploitability etc.)

Implementation: Stems directly from the implementation of the use case.

UCG-16-04

NFR21 Requirement: Creation of the Trust DB

Implementation: Instructions and/or automations for creating the TrustDB
will be provided.

-

NFR22 Requirement: Trust DB will store records only hashed data

Implementation: Data that are primarily stored in other databases will be
maintained as hashes with relevant pointers.

UCG-04-01

4.2.2 Related use cases

Table 4-3 lists the use cases related to the TMS and the provisions made by the component to support the
fulfilment them.

Table 4-3. Use-cases related to the TMS

REF_ID Description of implementation

UCG-10-05 Use case: Manually curate device profile

Implementation: The TMS provides an API through which device trust scores can be
explicitly set.

UCG-13-01 Use case: Retrieve trust level from TMS

Implementation: Trust levels are computed by the TMS as relevant events occur and stored
in the trust database. The trust database realizes an API through which authorized entities
can retrieve the trust level assessments, either for a single device or for a bulk of devices.

UCG-13-02 Use case: Compute device trust level

Implementation: The TMS intercepts notifications sent by other Cyber-Trust platform
components, and exploits the information therein to compute the trust level. The
notifications are received through the Cyber-Trust system message bus.

UCG-15-02 Use case: Compute device risk level

Implementation: The TMS computes a new value for the risk level of a device. Information
about the current device trust level, the current status of network attacks and network
traffic related to the device (as compared with the baseline), the device vulnerabilities and
their exploitability, the device health level and views of peer-level TMSs are taken into
account to produce a comprehensive risk score.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 23

UCG-16-04 Use case: Identify and prioritize cyber-threats

Implementation: Distinct cyberthreats are considered and their total impact on the
protected network and its resources is assessed, producing a per-cyberthreat score.
Cyberthreats are then ordered in descending score order to produce the result.

4.3 Technology update
The Cyber-Trust TMS extends the current TMS paradigms and implementations by considering additional
dimensions in the computation of the trust scores, notably the status of the devices and the associated risk.
For the computation of the associated risk, the business value of assets can be considered where available.
The TMS implementation will be able to adapt to its runtime environment: in resource-rich environments the
full capabilities of the TMS will be included, which necessitate extensive computations and ample resources,
while in constrained environments some features will not be realized, with the respective functionalities
being consumed as services offered by corresponding, trusted, feature-rich installations.

4.4 Application architecture
Figure 4-1 illustrates the conceptual view of the Trust Management Service. Its architecture is designed to
allow for exposing a coherent API, enabling any adaptation aspects to be implemented internally considering
all the appropriate contexts (network & resource availability, situation criticality etc.). Reception of
information needed to recompute the trust and risk scores - including device status, behaviour an associated
risk aspects - are mainly intercepted through asynchronous messaging, through a dedicated communication
channel, following the pub/sub paradigm. In this way, the TMS is decoupled from event producers and their
timings; however, content consumption via APIs can be also used. Reciprocally, the TMS publishes events
regarding notable changes of trust and risk levels, while also offering the same information under REST APIs.
Adaptation, where needed, will be supported by an adaptation component to be developed and maintained
separately from the computational aspects, promoting separation of concerns.

Figure 4-1. TMS high-level design

The overall high-level architecture of the TMS is depicted in Figure 4-1, while Figure 4-2 depicts the data view
of the TMS, indicating:

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 24

(a) the data maintained internally in the TMS database;

(b) the messages that the TMS subscribes to in order to obtain the necessary information to compute
trust and risk levels, as well as the sources of these messages, according to the overall Cyber-Trust
architecture;

(c) the messages that the TMS makes available to the asynchronous communication infrastructure, for
the perusal of other Cyber-Trust components.

Trusted Peer TMS are curated directly by users.

Figure 4-2. TMS data view

4.5 Application programming interfaces
The TMS exposes the REST APIs listed in the following subsections for direct invocation by other Cyber-Trust
modules. As noted in subsection 4.4, the TMS additionally employs a loose coupling communication pattern,
through the exchange of messages via the message bus; the respective messages consumed through the
message bus will be elaborated on in the context of WP8.

4.5.1 REST APIs for managing device trust

Table 4-4 depicts the operations available for managing device trust, along with a brief description of each
one.

Table 4-4. REST APIs for managing device trust

API URL specification Description

GET /trust /info /{deviceId} Returns the trust level for a device. The client may designate
the desired trust dimensions. The information whether the
reported trust level is explicit or implicit, is always returned.

PUT /trust/explicitLevel/{deviceId} Explicitly specify the trust level of the device.

DELETE /trust/explicitLevel/{deviceId} Delete the explicitly specified trust level of the device, returning
to automatic computation.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 25

GET /trust Returns trust level for a set of devices. The client may designate
the desired trust dimensions. The information whether the
reported trust level is explicit or implicit, is always returned.

4.5.2 REST APIs for managing peer TMSs

Table 4-5 depicts the operations available for managing peer TMSs, along with a brief description of each
one.

Table 4-5. REST APIs for managing peer TMS instances

API URL specification Description

GET /peerTMS/{peerTMSId} Returns information for a registered peer TMS

DELETE /peerTMS/{peerTMSId} Deletes/unregisters a peer TMS.

PUT /peerTMS/{peerTMSId} Creates or modifies a peer TMS.

GET /peerTMS Returns information for a designated set of TMS

GET /peerTMS/list/all Returns information for all registered TMS

4.5.3 REST APIs related to risk management

Table 4-6 depicts the operations available for risk management, along with a brief description of each one.

Table 4-6 REST APIs related to risk management

API URL specification Description

GET /risks/prioritize returns the top risks, prioritized. The number of risks to return
is described in the (optional) numRisks parameter. If missing, a
default number is inserted

4.5.4 REST APIs related to trusted user management

Table 4-7 depicts the operations available for trusted user management, along with a brief description of
each one. Trust to users reflects on trust to the devices owned by them.

Table 4-7. REST APIs related to trusted user management

API URL specification Description

GET /trustedUser/{trustedUserId} Returns information about the designated trusted user.

DELETE /trustedUser/{trustedUserId} Deletes/unregisters a trusted user.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 26

PUT /trustedUser/{trustedUserId} Creates or modifies a trusted user.

GET /trustedUser Returns information for a designated set of trusted users

GET /trustedUser/list/all Returns information for all registered trusted users

4.6 Technology Stack
The technology stack and tools used for the implementation of the TMS are listed in Table 4-8. The technology
stack has not been modified since D4.4 [3].

Table 4-8. Technology stack and applied tools used for the implementation of the TMS

Tool Description

Swagger Employed for prototyping the REST APIs of the TMS

Java The TMS functionality is coded in Java

Spring framework The Spring framework is employed to intercept and serve REST API requests

MariaDB/MySQL DBMS for managing the TrustDB

Javax.Persistence For managing database connections and persistent entities

AMPQ/Asynchronous
message protocol

For realizing pub/sub-based communications.

4.7 Physical architecture
In terms of physical architecture, the following deployment options exist:

1. The TMS is deployed as a single VM, running both the TMS and the data store (MariaDB/MySQL).

2. The TMS is deployed as two distinct VMs, one running the TMS while the second one running the
data store. This option is preferable if a single data store is shared among multiple Cyber-Trust
components.

3. The TMS is deployed as one single Docker container, running both the TMS and the data store. Taking
into account that Docker containers are ephemeral, provisions should be made upon deployment to
map the filesystem of the Docker container that holds the data to stable storage.

4. The TMS is deployed as two docker containers, one running the TMS and one running the data store.
This option is preferable if a single data store is shared among multiple Cyber-Trust components.

5. The TMS is deployed as a Java application within a non-virtualized environment. This option is
expected to be used (a) in environments not supporting virtualization and (b) in restricted
environments where the overhead introduced by virtualization is not tolerable.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 27

4.8 User Interface
The TMS runs as a service in Cyber-Trust platform and therefore it does not provide a dedicate own user
interface (UI). However, certain UI elements are included in Cyber-Trust platform (e.g. information about the
trust score of devices) to allow meaningful information to be provided to the user.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 28

5. Intelligent intrusion response

5.1 Overview / objectives
The Intelligent Intrusion Response (iIRS, A13) module runs on the smart gateway at the user�[�• home network.
Its main responsibility being the real-time computation of mitigation actions that could be employed, with
or without user interaction, against sophisticated network attacks. To this end, the iIRS receives alerts, in
real-time, by the Intrusion Detection System (IDS, A04g) to update its belief about the security status of the
smart home network (i.e. the capabilities an attacker might have acquired) �t as described in D5.1 [6].

Then the attack graphical security model is calculated, presenting the interconnection between exploits and
the security attributes of both network devices and their provided services (the capabilities an attacker has
and might acquire) �t see D2.5 for more details [7]. Fundamental for the creation of the attack graphical
security model is the availability of comprehensive information about both the network and its hosts (i.e.
present exploits, connectivity between hosts and subnetwor�l�•�U�����š���X�•�U�����v�����š�Z�������š�š�����l���Œ�[�•�������š�]�}�v�•�X

To aid in optimization of the defence �����š�]�}�v�•�����v�����š�}���u���Æ�]�u�]�Ì�����š�Z�����µ�•���Œ�[�•���•���š�]�•�(�����š�]�}�v�U���À���Œ�]�}�µ�•�����š�š�Œ�]���µ�š���•�������}�µ�š��
the network devices and their provided services may be defined. Optimal response actions are calculated
b���•������ �}�v���š�Z���� ���š�š�����l�� �P�Œ���‰�Z�����v���� �š�Z���� �µ�•���Œ�[�•���‰�Œ���(���Œ���v�����•�X���d�Z���� ���u�‰�o�}�Ç�u���v�š���}�(���š�Z�}�•���� �Œ���•�‰�}�v�•���� �����š�]�}�v�•�������v��������
either automatic or manual (suggested to the user).

The iIRS consists of three modules, all running on the smart gateway, that communicate using their REST
endpoints:

a) the iIRS Attack Graph Generator (iRG) which is responsible for the calculation of the attack graph and
of the remediation actions that may be employed,

b) the iIRS Decision-making Engine (iRE) which is responsible for the dynamic employment of the
�Œ���u�����]���š�]�}�v�������š�]�}�v�•�������•�������}�v���š�Z�����v���š�Á�}�Œ�l�[�•�����š�š�����l���P�Œ���‰�Z���u�}�����o�U

c) the iIRS Client (iRC) which consists of two interfaces that control and display the status of each of the
aforementioned modules.

Each of the three modules will be presented in more detail in the following sections.

5.2 Functionality coverage

5.2.1 Related requirements

Table 5-1 and Table 5-2 present the functional (FR) and the non-functional (NFR) requirements respectively
that the component meets along with their related use cases, as defined in D4.4 [3].

Table 5-1. Functional requirements and use-case references for the iIRS

REF_ID Description of implementation Use Cases

FR55 Requirement: The user will be able to characterize each asset on the
network and the respective value

Implementation: The user may define an importance level for each device
�}�Á�v�����������•�������}�v���Z�]�•���‰�Œ���(���Œ���v�����•�X���d�Z���•�������Z�}�]�����•�����Œ�����µ�•�������š�}���u���Æ�]�u�]�Ì�����µ�•���Œ�[�•��
satisfaction and balance between security and availability.

UCG-04-02
UCG-04-03

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 29

FR56 Requirement: Cyber-Trust will automatically mitigate abnormal behaviour
based on the network map, the characterization of the assets, the impact of
the attack as well as the impact of the mitigation actions. If the mitigation
action has severe impact on certain dimensions of assets that score high
value Cyber-Trust will propose possible actions, but it will not implement it
automatically.

Implementation: The impact that the various mitigation actions have on the
availability of network services (e.g. by refusing communication requests or
shutting down running services) is quantified and can be tailored by the
user. The user can choose if such decisions should be made automatically.

UCG-04-03
UCG-06-07

FR76 Requirement: The user (e.g. Security officer) will be able to create the cyber-
attack graphical security model based on specific network infrastructures
(architecture, topology, devices and related information).

Implementation: The iIRS creates an attack graph presenting how exploits
relate to various security attributes and vulnerabilities found in the smart
home environment. The information needed to construct the attack graph
is obtained mainly from the A16 component, and possibly complemented
by the profiling service or the eVDB.

UCG-15-01

FR77 Requirement: Development of appropriate UI for entering dynamic
parameters regarding the system (i.e. state transition model, expected
utility function). These parameters will be used in order to re-calculate
���š�š�����l�[�•���o�]�l���o�]�Z�}�}�������v�����•�µ�������•�•���‰�Œ�}�������]�o�]�š�Ç�X

Implementation: �d�Z���•�������}�u�‰�µ�š���š�]�}�v�•���}�(�����v�����š�š�����l�[�•���o�]�l���o�]�Z�}�}�������v�����•�µ�������•�•��
probabilities are performed by the iIRS by utilizing information from the A16
component, and possibly from the eVDB and the profiling service.

UCG-15-03

FR80 Requirement: Intelligent Intrusion Response System (iIRS) will compute a
suitable defense action based on (at least) the system security state and the
���š�š�����l���Œ�[�•���‰�Œ�}�(�]�o���X

Implementation: The iIRS computes the optimal defense action based on
the information it possesses about the system security state and the
���š�š�����l���Œ�[�•���‰�Œ�}�(�]�o���X

UCG-18-05

FR81 Requirement: The security Officer will be able to initiate the process of
defining/updating the applicable mitigation actions on the system of devices
�š�Z�Œ�}�µ�P�Z���š�Z�����•�Ç�•�š���u�[�•���h�/���~�����•�������}�v���v���Á�����À���]�o�����o�������Æ�‰�o�}�]�š�•�����v�����‰�}�•�•�]���o���������š�]�}�v��
for these exploits).

Implementation: The applicable mitigation actions are either defined
manually (by security experts) or automatically based on the information
available from the eVDB or the profiling service.

UCG-18-06

FR82 Requirement: Based on FR81: The user (based on access role) selects the
applicable mitigation actions for each exploit.

Implementation: The applicable mitigation actions are either defined
manually (by security experts) or automatically based on the information

UCG-18-06

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 30

available from the eVDB or the profiling service. Access control rights are
enforced by other components, e.g. the authentication service and A06.

Table 5-2. Non-functional requirements and use-case references for the iIRS

REF_ID Description of implementation Use Cases

NFR40 Requirement: iIRS will use the alerts raised by the IDS in order to update the
belief it possesses over the system security state.

Implementation: The iIRS uses the alerts provided by the intrusion
detection system [A04g] to update the belief it has about the system
�•�����µ�Œ�]�š�Ç���•�š���š�����~�]�X���X�����v�����š�š�����l���Œ�[�•�������‹�µ�]�Œ�����������‰�����]�o�]�š�]���•���Á�]�š�Z�]�v�������v���š�Á�}�Œ�l�•�X

UCG-15-04

5.2.2 Related use cases

Table 5-3 lists the use cases related to the iIRS and the provisions made by the component to support the
fulfilment them.

Table 5-3. Use-cases related to the iIRS

REF_ID Description of implementation

UCG-04-02 Use case: ���Z���Œ�����š���Œ�]�Ì�������•�•���š�[�•���]�u�‰�}�Œ�š���v�����X

Implementation: The user is allowed to define an importance level for each device owned
�������}�Œ���]�v�P�� �š�}�� �Z�]�•�l�Z���Œ�� �‰�Œ���(���Œ���v�����•�X�� �d�Z���•���� ���Z�}�]�����•�� ���Œ���� �µ�•������ ���Ç�� �š�Z���� �]�/�Z�^�� �š�}�� �u���Æ�]�u�]�Ì���� �µ�•���Œ�[�•��
satisfaction while balancing between security and availability in the defence actions to apply
(�]�X���X���Á�Z�]���Z�����Æ�‰�o�}�]�š�•���š�}�����o�}���l�l�o�����À�����}�‰���v���š�}�����v�•�µ�Œ�����v���š�Á�}�Œ�l���•���Œ�À�]�����•�[�����À���]�o�����]�o�]�š�Ç�•�X

UCG-04-03 Use case: �����(�]�v�����u�]�š�]�P���š�]�}�v�������š�]�}�v�•�[���]�u�‰�����š�X

Implementation: The impact that the various mitigation actions have on the availability of
network services (e.g. by refusing communication requests or shutting down running
�•���Œ�À�]�����•�•���]�•���‹�µ���v�š�]�(�]�����X�����o�}�v�P���Á�]�š�Z���š�Z�����•�u���Œ�š���Z�}�u�����}�Á�v���Œ�[�•���‰�Œ���(���Œ���v�����•�U���š�Z�]�•���]�•���µ�•�������š�}�������(�]�v����
the utility function that is required by the iIRS.

UCG-06-07 Use case: Communicate iIRS actions to the security officer.

Implementation: The iIRS after computing the optimal defence action, it informs the user
(security officer) through the intelligent UI portal.

UCG-15-01 Use case: Compute cyber-attack graphical security model.

Implementation: The iIRS creates an attack graph presenting how exploits relate to various
security attributes and vulnerabilities found in the smart home environment. The information
needed to construct the attack graph is obtained mainly from the A16 component, and
possibly complemented by the profiling service or the eVDB.

UCG-15-02 Use case: Compute device risk level.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 31

Implementation: The iIRS is involved in this use-case, with TMS being the main actor for
���}�u�‰�µ�š�]�v�P�����������À�]�����[�•���Œ�]�•�l���o���À���o�V���š�Z�����]�/�Z�^���‰�Œ�}�À�]�����•���]�v�(�}�Œ�u���š�]�}�v�������}�µ�š���v���š�Á�}�Œ�l-wide risks and
the current status of network attacks.

UCG-15-03 Use case: ���}�u�‰�µ�š�������š�š�����l�[�•���o�]�l���o�]�Z�}�}�������v�����•�µ�������•�• probability.

Implementation: �d�Z���•�������}�u�‰�µ�š���š�]�}�v�•���}�(�����v�����š�š�����l�[�•���o�]�l���o�]�Z�}�}�������v�����•�µ�������•�•���‰�Œ�}�������]�o�]�š�]���•�����Œ����
performed by the iIRS by utilizing information from the A16 component, and possibly from
the eVDB and the profiling service.

UCG-15-04 Use case: Compute a belief on current security status.

Implementation: The iIRS uses the alerts provided by the intrusion detection system [A04g]
�š�}�� �µ�‰�����š���� �š�Z���� �����o�]���(�� �]�š�� �Z���•�� �����}�µ�š�� �š�Z���� �•�Ç�•�š���u�� �•�����µ�Œ�]�š�Ç�� �•�š���š���� �~�]�X���X�� ���v�� ���š�š�����l���Œ�[�•�� �����‹�µ�]�Œ������
capabilities within a network).

UCG-16-03 Use case: Receive intrusion detection system(s) alerts.

Implementation: The iIRS regularly obtains the alerts generated by the IDS [A04g], which
constitutes the primary source of input, and evaluates them in order to infer the true system
security state, by considering the possible mis-detections and false alarms.

UCG-18-01 Use case: Apply Mitigation Policy on Device.

Implementation: The iIRS is involved in this use-case, with the SDA and SGA (actually, the
A04g component) being the main actors for applying the mitigation actions computed. The
iIRS communicates the mitigation actions to the IDS for being applied at the network level,
and then at the device level as well.

UCG-18-05 Use case: Compute optimal intrusion response actions.

Implementation: The iIRS computes the optimal defence action based on the information it
possesses about the system security state and the at�š�����l���Œ�[�•���‰�Œ�}�(�]�o���X

UCG-18-06 Use case: Define applicable mitigation actions.

Implementation: The applicable mitigation actions are either defined manually (by security
experts) or automatically based on the information available from the eVDB or the profiling
service.

5.3 Technology update
This section documents at a high level the changes on the tools which the modules of the iIRS are built upon
(see Section 0 for the details). This concerns mainly the iRG which is based on the open source server
component of the FIWARE CyberCAPTOR project1, with a number of significant modifications, extensions and
architectural changes to fulfil the requirements of Cyber-Trust.

At the core of the iIRS module, and more specifically the main responsibility of the iRG, is the generation of
the attack graphical security model from the network topology information obtained by the A16 component,
and the calculation of the static risk analysis model for which the attack graph is primarily generated.

1 https://cybercaptor.readthedocs.io/

https://cybercaptor.readthedocs.io/

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 32

To accommodate the complexity of the smart home networks a new and more advanced risk analysis model
has been implemented. This advanced model focuses on the attempt probability (whether an exploit will be
chosen over others) and the success probability (whether an exploit will succeed once exploited) of exploits
to assess their presented risk for the network.

Along with the new risk analysis model, a new algorithm was implemented to calculate the appropriate
firewall rules to be applied or suggested to the user, including the impact of each rule on the attack graph
model of their application.

To accommodate the communication requirements of Cyber-Trust and to ensure full compliance with the
information bus requirements, the REST API was completely rewritten (including changes in the REST
endpoint naming). The new API implements a more robust error checking and reporting routine, with support
�(�}�Œ�����]�P�]�š���o���•�]�P�v�]�v�P���}�(���š�Z�����u���•�•���P���[�•���‰���Ç�o�}�������š�}���‰�Œ���À���v�š�������š�����š���u�‰���Œ�]�v�P�����š�š����ks.

To support the interconnection of the iRG with the other ���}�u�‰�}�v���v�š�[�•��submodules (the iRE and iRC) and the
rest of the components of Cyber-Trust (mainly the A16, A04g components and the eVDB) multiple REST
endpoints were created to receive and provide data.

Schema changes to the internal database were necessary to support the storage of Common Vulnerability
Scoring System (CVSS) version 3.1 information, in addition to the already existing support for CVSS version 2,
and to support integration with the eVDB.

Along with the aforementioned additions and changes, the Docker image creation process had to be
restructured to support the (currently) private Cyber-Trust GitLab repository, used during the development
process, and to be better suited for the handling of cryptographic keys with care for development artefacts.

5.3.1 Attack Graph Generation Tool Comparison

MulVAL is a wide-used tool for producing logical attack graphs and each software associated with it has a
pre-defined set of rules. Those rules describe either initial conditions (called pre-conditions) or conditions
resulting from the application of exploits (called post-conditions). Table 5-4 shows the differences between
MulVal, CyberCAPTOR, Doctor and Cyber-�d�Œ�µ�•�š�[�•��iIRG. Our rules stay similar to those of CyberCAPTOR, as the
�����u���v���•�� �(�}�Œ�� �}�µ�Œ�� ���š�š�����l�� �P�Œ���‰�Z�[�•�� �P���v���Œ���š�]�}�v�� ���Œ���� �v�}�š�� ���o�š���Œed and at the same time are more advanced,
compared to those of the original MulVAL.

Table 5-4. Comparison of rules used in the attack graphs.

Rule M C D iRG Example

vulExists �9 �9 �9 �9 vulExists(_host, _vulID, _program)

vulProperty �9 �9 �9 �9 vulProperty(_vulID, _range, _consequence)

haclPrimit �9 �9 �9 �9 haclprimit(_src, _dst, _prot, _port)

attackerLocated �9 �9 �9 �9 attackerLocated(_host)

hasAccount �9 �9 �9 �9 hasAccount(_principal, _host, _account)

netWorkServiceInfo �9 �9 �9 �9 Doctor and CyberCAPTOR version:

networkServiceInfo(_ip, _program, _protocol, _port, _user)

MulVAL version:

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 33

networkServiceInfo(_host, _program, _protocol, _port,
_user)

installed �9 �9 �9 �9 installed(_h, _program)

isInVlan �9 �9 �9 isInVlan(_ip,_vlan)

vlanToVlan �9 �9 �9 vlanToVlan(_vlan1,_vlan2,_protocol,_port)

ipToVlan �9 �9 �9 ipToVlan(_ip,_vlan,_protocol,_port)

vlanToIP �9 �9 �9 vlanToIP(_vlan,_ip,_protocol,_port)

defaultLocalFilteringBeha
viour

 �9 �9 �9 defaultLocalFilteringBehavior(_toip,_behavior)

localFilteringRule �9 �9 �9 localFilteringRule(_fromIP,_toIP,_port,_behavior)

hasIP �9 �9 �9 hasIP(_host,_IP)

IpInSameVLAN �9 �9 �9 ipInSameVLAN(_ip1,_ip2)

localAccessEnabled �9 �9 �9 localAccessEnabled(_ip,_fromIP,port)

execCode �9 �9 �9 execCode(_host, _user)

netAccess �9 �9 �9 Doctor and CyberCAPTOR version:

netAccess(_ip,_protocol,_port)

MulVAL version:

netAccess(_machine,_protocol,_port)

canAccessHost �9 �9 canAccessHost(_host)

hacl �9 �9 �9 hacl(_src, _dst, _prot, _port)

attackGoal �9 �9 �9 attackGoal(_)

advances �9 �9 advances(_, _)

accessFile �9 accessFile(_machine,_access,_filepath)

canAccessFile �9 canAccessFile(_host, _user, _access, _path)

vnfManagedBy �9 vnfManagedBy(_host,_vnfm)

cvss �9 cvss(_vulID, _ac)

inCompetent �9 inCompetent(_principal)

competent �9 competent(_principal)

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 34

clientProgram �9 clientProgram(_host, _programname)

setuidProgramInfo �9 setuidProgramInfo(_host, _program, _owner)

nfsExportInfo �9 nfsExportInfo(_server, _path, _access, _client)

nfsMounted �9 nfsMounted(_client, _clientpath, _server, _serverpath,
_access)

localFileProtection �9 localFileProtection(_host, _user, _access, _path)

accessMaliciousInput �9 accessMaliciousInput(_host, _principal, _program)

principalCompromised �9 principalCompromised(_victim)

dos �9 dos(_host)

logInService �9 logInService(_host, _protocol, _port)

dependsOn �9 dependsOn(_h, _program, _library)

installed �9 installed(_h, _program)

bugHyp �9 bugHyp(_,_,_,_)

canAccessFile �9 canAccessFile(_host, _user, _access, _path)

isWebServer �9 isWebServer(_host)

vmOnHost �9 vmOnHost(_vm, _host, _software, _user)

vmOnDomain �9 vmInDomain(_vm, _orchestrator)

vnfOnPath �9 vnfOnPath(_vnf,_host1,_host2,_port,_daemon,_user)

localServiceInfo �9 localServiceInfo(_servicename, _host, _program, _user)

hasNDNFace �9 hasNDNFace(_host, _face)

isNDNRouter �9 isNDNRouter(_host)

ndnServiceInfo �9 ndnServiceInfo(_host, _software, _user)

ndnLink �9 ndnLink(_host1, _face1, _host2, _face2

ndnOutputCompromised �9 ndnOutputCompromised(_ndnRouter,_signatureMode

ndnOutputCompromised
Local

 �9 ndnOutputCompromisedLocal(_ndnRouter)

ndnOutputCompromised
Remote

 �9 ndnOutputCompromisedRemote(_ndnRouter1,
ndnRouter2,_signatureMode

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 35

ndnTrafficIntercepted �9 ndnTrafficIntercepted(_ndnRouter)

The exploits supported by the rules of Table 5-4 can lead to many interaction rules, where there exists no
one-to-one mapping between the exploits and the interaction rules, which can be generated in different
ways by multiple combinations. In principle, the ���š�š�����l���Œ�[�•���P�}���o is linked with the desired ability to execute
arbitrary code at a certain IoT device. This is defined as follows:

execCode(_attacker, _host, _permission)
execCode(_host, _permission)

where _name represents variables (with the names being self-explained in the above rule). By eliminating a
variable, this means that the rule should hold for any value of the eliminated variable. Hence, it is common
that �š�Z�������š�š�����l���Œ�[�•���P�}���o���]�•���•�š���š���������•���(�}�o�o�}�Á�•�W

attackGoal(execCode(_host, root))
attackGoal(execCode(smartTV, root))

where the attacker aims at obtaining root privileges at any or a specific machine �v a smart TV in the above
example.

5.3.2 Active Mitigation Action Calculation

An efficient and effective algorithm was implemented to support the generation of active remediations, as
are requested at run-time by the iRE, to achieve temporary changes to the attack graph by changing the
network topology. The most basic way to change the network topology was to change the interconnectivity
of hosts, both in the same subnetwork and across subnetworks, and thus effectively block access to
vulnerable services by employing firewall rules at the gateway.

At first, the algorithm begins with the desired node to be blocked (that is, to be temporarily removed along
with its subgraph from the attack graph) and moves towards the leaves of the graph. It explores (using depth
first search) whether any node has enough information to generate a firewall rule and stores their
connections and relations in a tree structure. This structure can represent multiple sets of firewall rules that
can be applied to block the specified (by the iRE) attack graph node.

Starting from the node to be blocked:

�x When a node, regardless of its type, can generate a firewall rule, the required information is added
to the tree, and exploration on this part of the graph is terminated. The depth first search pattern
continues with the next attack graph path.

�x �t�Z���v�����v���^�K�Z�_�����š�š�����l���P�Œ���‰�Z���v�}�������]�•���Œ�������Z�����U�������v���Á���^���E���_���}�‰���Œ���š�}�Œ���v�}�������]�•���������������š�}���š�Z�����š�Œ�����X�����•���š�}��
�Œ���v�����Œ���]�v�À���o�]�������v���^�K�Z�_�����š�š�����l���P�Œ���‰�Z���v�}�����U�����o�o���}�(���]�š�•���‰���Œ���v�š���v�}�����•���v���������š�}���������]�v�À���o�]�����š�����X

�x �t�Z���v�� ���v�� �^���E���_�� ���š�š�����l�� �P�Œ���‰�Z�� �v�}������ �]�•�� �Œ�������Z�����U�� ���� �v���Á�� �^�K�Z�_�� �}�‰���Œ��tor node is added to the tree.
�^�Ç�u�u���š�Œ�]�����o�o�Ç���Á�]�š�Z���š�Z�����‰�Œ���À�]�}�µ�•�������•���U���š�}���Œ���v�����Œ�����v���^���E���_�����š�š�����l���P�Œ���‰�Z���v�}�������]�v�À���o�]���U�����š���o�����•�š���}�v�����}�(��
its parent nodes needs to be invalidated.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 36

�x �t�Z���v�������^�>�����&�_�����š�š�����l���P�Œ���‰�Z���v�}�������]�•���Œ�������Z�����U�������E�h�>�>���š�Œ�������v�}�������]�•�������������X���d�Z�]�•���]�•���v������ssary for the
�š�Œ�]�u�u�]�v�P���‰�Z���•���U�����•�����À���Œ�Ç���š�Œ�������‰���š�Z���š�Z���š�����}���•�v�[�š�����v�����]�v�������(�]�Œ���Á���o�o���Œ�µ�o�����v�}�������v�������•���š�}���������Œ���u�}�À�����X

�d�Z�����]�v�]�š�]���o���š�Œ�������P���v���Œ���š�������Á�Z���v���•�����Œ���Z�]�v�P���(�}�Œ�������š�]�À�����Œ���u�����]���š�]�}�v�•���}�v�������Œ�}�}�š���v�}�������~�^�K�Z�_���š�Ç�‰���•���}�(���š�Z�������š�š�����l��
graph and after the removal of paths ending in NULL tree nodes.

Figure 5-1. Initial tree generated by the remediation generation algorithm

After the tree is generated, the trimming process is applied to remove tree paths that result in a NULL node,
and a process collapsing its operators is repeatedly applied on the tree to simplify its structure, making it
easier to process when generating the final solutions. The final form of the tree, after the collapse of
extraneous operators.

Figure 5-2. Simplified tree generated after the pruning and collapsing process

The final solutions generated from the above process are in a canonical form that resembles the disjunctive
normal form (DNF) in logical expressions and Boolean circuits; i.e. it is a disjunction of conjunctions:

�:�4�5 �è �® �è �4�Þ�; �é�:�4�5 �è �® �è �4�á�; �é �® �é�:�4�5 �è �® �è �4�à �;

where �4�Ü represents a firewall rule. This allows iRE the choice between multiple solutions (of possibly many
firewall rules) that block the specified attack graph node, a choice that can be made by the user (in manual
mode) or by the iRE directly (in auto mode) by ranking each group based on a set of defined criteria.

5.3.3 Risk Analysis

Various models have been proposed regarding the risk analysis on attack graphs or attack trees. Our model
starts with the general idea proposed by [13] that focuses �}�v���š�Z�������š�š�����l���Œ�[�•�������‰�����]�o�]�š�]���•�����v�����š�Z�����o�]�l���o�]�Z�}�}�����}�(��
a particular attack being executed. The Local Conditional Probability Distribution (LCPD) table is computed

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 37

for each node, which defines the probability of a node to be compromised given the combined value of the
states of its parent(s) �t see Figure 5-3.

Figure 5-3. An example of a Bayesian attack graph

The values on LCPDs occur based on the CVSS metrics. Specifically, according to the type of the destination
node on an edge of the graph, we define the attempt and success probabilities if there is a vulnerability as a
parent/source node. The destination node on a random edge can be either an AND (exploit) or an OR (security
condition) node of the logical attack graph generated by MulVAL. In particular, for an AND node

�2�N�>�ƒ�–�–�‡�•�’�–�?L \
�' �®�4�.�®�4�%�á �‹�ˆ���–�‡�•�’�‘�”�ƒ�Ž���•�‡�–�”�‹�…�•���ƒ�”�‡���ƒ�˜�ƒ�‹�Ž�ƒ�„�Ž�‡
�s F�:�s F �%�; �®�:�s F �+�; �®�:�s F �#�;�á �‘�–�Š�‡�”�™�‹�•�‡

where E is the exploit code maturity, RL the remediation level, RC the report confidence, C the confidentiality,
I the integrity, and A the availability. Likewise, for an OR node we have

�2�N�>�•�—�…�…�‡�•�•�?L \
�t�á�s�s�®�#�8�®�#�%�®�2�4�®�7�+�á �‹�ˆ�������������˜�u���•�‡�–�”�‹�…�•���ƒ�”�‡���ƒ�˜�ƒ�‹�Ž�ƒ�„�Ž�‡
�t�á�r�r �®�#�8�®�#�%�®�#�Q�á �‘�–�Š�‡�”�™�‹�•�‡

where AV is the attack vector, AC the attack complexity (or access complexity in CVSS v2), PR the privileges
required, UI the user interaction, and Au the authentication. To compute the unconditional probability for
each node, the following expression needs to be computed

�2�N�>�� �Ü�?L Í �2�N�>�� �5�á �å �á ���á�?
�„�?�Ñ�Ô

L Í Ñ �2�Nc���Ý���������ƒk���Ýog
�Ý�·�Ü�„�?�Ñ�Ô

where �„ F �: �Ü indicates that the sum is over all the possible states of all the random variables except �: �Ü.
However, this calculation is a NP-hard since the complexity of a typical algorithm has O(2n) complexity.
Applying brute force techniques for the computation of the unconditional probabilities is not a reasonable

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 38

approach because all computations need to be done at almost real time with low memory needs. Thus, we
use a different approach to compute the unconditional probabilities using the Loopy Belief Propagation (LBP)
algorithm. This approach works only on factor graphs that are associated with a Bayesian network.

The message passing algorithm focuses on passing pre-computed values through the network as messages.
There are two different kind of messages: from Factor nodes to Variable nodes and from Variable nodes to
Factor nodes. LBP updates all the messages for all factors and variables at the same time using values from
previous iterations. The algorithm runs until we reach the maximum pre-defined number of iterations or until
an �º�6 metric get smaller than 10�t2. The unconditional probabilities are computed as the product of incoming
final messages from neighbouring factor nodes to the corresponding variable node. Not only there is a
significant time complexity reduction in our model, but the memory used is notable less.

The Risk Analysis model also considers the criticality associated with each device as an input from the user.
As it can be seen from the iRG client interface (see Section 5.8), there are various possible choices regarding
the criticality of the Hosts. More specifically, the user can assign a value of

�x None (10),

�x Negligible (10),

�x Minor (30),

�x Medium (50),

�x Severe (70) and

�x Catastrophic (90).

5.3.4 Optimal decision-making

�d�Z�����]�/�Z�^�[�• decision making engine consists of two components: the server and the client. The server performs
all necessary computations including the processing of security information passed from other system
components (e.g. the attack graph, remediation actions and security alerts), local optimal policy estimation,
attack propagation belief update and user preference tuning. It is an essential component of the final
platform. In contrast, the client is a component most useful for testing and development and its main
functionality is to enable the visual representation of simulated attacks and defence scenarios. Both parts of
the software were developed from scratch (no open source software is available) and is documented in
Sections 5.4.5 and 5.8 respectively.

5.4 Application architecture
This section presents the iIRS architecture from two different viewpoints: the high-level view and the data-
centric view and presents the internals of the three major subcomponents of the iIRS.

5.4.1 High-level architecture

The high-level architecture of Figure 5-4 illustrates the existence of the three main responsibilities of the iIRS:

a) the generation of the attack graph model and the calculation of the risk state of the network,
performed on the iIRS Attack Graph Generator (iRG);

b) the calculation of the optimal defence actions, performed on the iIRS Decision-making Engine (iRE);
and

c) the display of all the relevant information in a user-friendly way, performed by the iIRS Client (iRC).

Each subcomponent of the iIRS communicates internally, through localhost, via their exposed REST endpoints
while presenting a unified API externally, to the other Cyber-Trust components. This allows greater flexibility

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 39

on their deployment, compartmentalization of their data and code, and allows for independent development
of each submodule.

Figure 5-4. Architecture of the iIRS component

5.4.2 Data-centric architecture

The data-centric view (see Figure 5-5) presents and puts the iIRS into the greater perspective of Cyber-Trust,
by displaying the data requirements and requests along with the modules that provide or consume that data.
From that view the associated modules and their relation with the iIRS [A13] become apparent.

Figure 5-5. Data-centric view of the iIRS component

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 40

The iRG, and by extension the iIRS, is connected with the A16g, A04g and the A17 (eVDB) components, from
which it receives the following information:

�x Detailed information about the network topology, the subnetworks and information about each
host; from the A16g module through Rest API calls #7 and #9-12.

�x Information about the exploitable vulnerabilities of each network host; from the A04g module via
Rest API call #8.

�x Information about available remediations, CVSS metrics, etc.; from the A17 (eVDB) module, updated
through Rest API call #3.

The iRE is connected internally with the iRG and externally with the A04g component, from which it receives:

�x The generated attack graph model along with information about the real-time actionable
remediation actions (firewall rules blocking specific attack graph nodes, as detailed in previous
sections); from the iRG.

�x Alerts about the current state of the smart home network allowing the iRE to act in response; from
the A04g module.

5.4.3 Remediation DB

�/�Z�'�[�•���Z���u�����]���š�]�}�v���������Z���•�����Œ���•�š�]�����o�o�Ç�����Z���v�P�������š�}���š�Z���š���}�(���š�Z�������Ç�����Œ�����W�d�K�Z�X���/�š���•�š���v���•�����•�������•�µ�����}�u�‰�}�v���v�š���}�(��
the iRG server, has its own daily updating mechanism and contains up to the latest CVEs found on the eVDB
component. Remediation DB is also capable of communicating with the National Vulnerability Database in
case the former communication is not possible. When eVDB sends the appropriate data to the integration
bus, the remediation DB is instantly updated. The �^�Àulnerability�_���š�����o�����~�•������Table 5-5) is the basic table of the
�/�Z�'�[�•���Z���u�����]���š�]�}�v������.

Table 5-5. �d�Z�����^�Àulnerability�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������

Attribute Type Example

id INTEGER
PRIMARY KEY AUTOINCREMENT

123899

cve TEXT UNIQUE CVE-2019-9974

description TEXT diag_tool.cgi on DASAN H660RM GPON routers with
firmware 1.03-0022 lacks any authorization check,
which allows remote attackers to run a ping command
via a GET request to enumerate LAN devices or crash
the router with a DoS attack.

cvss_id INTEGER 123899

�d�����o�����^���À�•�•�_��(see Table 5-6) now supports both CVSS 3.1 and CVSS 2, giving priority to the most recent version
of the standard�X���t�����Z���À�������o�•�}���]�v�]�š�]���o�]�Ì�������š�Z�����š���u�‰�}�Œ���o���u���š�Œ�]���•���Á�]�š�Z���^-�í�_�����•���Á�������}�v�[�š���Á���v�š���š�Z���u���š�}��corrupt
the computations of various probabilities when they are unavailable. eVDB provides the temporal metrics
only for a subset of the vulnerabilities due to the lack of such information from the sources of information.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 41

Table 5-6. �d�Z�����^���À�•�•�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������

Attribute Type Example

id INTEGER
�W�Z�/�D���Z�z���<���z�����h�d�K�/�E���Z���D���E�H

123899

score REAL 9.7

attack_vector TEXT NETWORK

attack_complexity TEXT LOW

authentication_priviledges TEXT NONE

user_interaction TEXT NONE

scope TEXT UNCHANGED

confidentiality_impact TEXT HIGH

integrity_impact TEXT NONE

availability_impact TEXT HIGH

exploit_code_maturity �d���y�d�������&���h�>�d���Z-�í�[-1

remediation_level �d���y�d�������&���h�>�d���Z-�í�[-1

report_confidence �d���y�d�������&���h�>�d���Z-�í�[-1

The �^�‰���š���Z���•�_���š�����o����(see Table 5-7) has also been adjusted to contain patches having been labelled with the
�^�W���š���Z�_�U���^�s���v���}�Œ�������À�]�•�}�Œ�Ç�_�����v�����^�d�Z�]�Œ�����W���Œ�š�Ç�������À�]�•�}�Œ�Ç�_���š���P�•�U���Á�Zereas the rest of the advisories that are being
imported to the eVDB from various vulnerability databases are considered to be irrelevant (or do not contain
useful information) for remediation purposes.

Table 5-7. �d�Z�����^patches�_���š�����o�����}�(���š�Z�����Œ���u�����]���š�]�}�v������

Attribute Type Example

id INTEGER
PRIMARY KEY AUTOINCREMENT

54402

link TEXT http://www.vupen.com/english/advisories/2009/1911

description TEXT ADV-2009-1911

tags TEXT Patch, Vendor Advisory

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 42

T�Z�����Z�o�]�v�l�[�����š�š�Œ�]���µ�š�����•�Z�}�Á�•���š�Z����URL provided for the patch and some information can be seen in the attribute
�Z�����•���Œ�]�‰�š�]�}�v�[�� �Á�Zere comments are often provided by vendors or third parties�X�� �&�]�v���o�o�Ç�U�� �š�Z���� �Z�š���P�•�[�� ���š�š�Œ�]���µ�š����
contains the labels associated with a remediation.

5.4.4 iIRS Attack Graph Generator (iRG) Server

The iRG is responsible for the generation of the attack graph from the topology information (obtained by the
A16 component), the calculation of the initial risk score (representing the initial security state belief of the
network) and the retrieval of real-time actionable remediation actions. The two major subcomponents of the
iRG (as seen in Figure 5-4) are responsible for the first two responsibilities:

�x the Data Extraction subsystem, a python script that compiles the topology information in XML form
from the data reported by the A16; and

�x the MulVAL attack graph generator, the system responsible for the generation of the actual attack
graph from a set of Datalog (Prolog-like) rules and the Datalog-converted topology.

The generation of the XML topology also requires information about the reported vulnerabilities, e.g. the
CVSS score of the vulnerability (required to calculate the initial risk score and the probabilities associated
with each vulnerability). This information is obtained by the A17 and eVDB components and stored locally in
the remediation DB, ensuring quick access and constant availability to its information (even if connections
with external systems are not available).

After the generation of the attack graph by MulVAL, the main iRG Java application loads both the topology
information and the attack graph in memory on which the risk analysis process and the actionable
remediations are calculated.

5.4.5 iIRS Decision-making Engine (iRE) Server

The iRE server communicates with various other Cyber-Trust platform ���}�u�‰�}�v���v�š�•���]�v���o�µ���]�v�P���š�Z�����]�/�Z�^�[�•�����š�š�����l��
graph generator (iRG), the IDS and the user interface, while the client only communicates with the server
(see also Figure 5-6). In this section we give a detailed description of the architecture, the main functionality
and technical aspects of the iRE server component, whereas the iRE client is further described in Section 5.8.

Figure 5-6�U���,�]�P�Z���o���À���o�����]���P�Œ���u���}�(���š�Z�����]�Z���[�•���]�v�š���Œ�����š�]�}�v�•���Á�]�š�Z���}�š�Z���Œ�����}�u�‰�}�v���v�š�•

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 43

We start with the server description. Note �š�Z���š�� �š�Z���� �•���Œ�À���Œ�[�•�� ���W�/�� �]�•�� �•�š���š���(�µ�o�V�� ���š�� ���v�Ç�� �u�}�u���v�š�� ���� �•�š���š���� �]�•��
maintained with all the system specific parameters. When a request is received, it is served according to the
current server state, which consists of the following parameters:

�x �^�u�]�v�z�]�š���Œ���š�]�}�v�•�_�W���]�vteger (default value 2000), specifies the minimum number of simulations to be
run while exploring the POMCP tree for locally computing the optimal policy at the current belief

�x �^�•�����µ�Œ�]�š�Ç�z���À���]�o�����]�o�]�š�Ç�z�š�Œ�������}�(�(�_�W���(�o�}���š���~�����(���µ�o�š���À���o�µ�����ì�X�ñ�•�U���•�‰�����]�(�]���•���š�Z�����Œ���o���šive weights of the security
and availability costs in the POMDP instantaneous reward function

�x �^�D���Æ�z�‰�Œ�}�����•�•���•�_�W���]�v�š���P���Œ���~�����(���µ�o�š���À���o�µ�����í�ò�•�U���•�‰�����]�(�]���•���š�Z�����u���Æ�]�u�µ�u���v�µ�u�����Œ���}�(���‰�Œ�}�����•�•���•���š�Z���š���Á�]�o�o��
be generated to run simulations in parallel

�x �^���À�•�•�z�Á���]�P�Z�š�•�_�W���š�µ�‰�o�����}�(�� �(�o�}���š�•���~�����(���µ�o�š���À���o�µ���� �ì�X�ï�ï�U�ì�X�ï�ï�U�ì�X�ï�ï�•�U���•�‰�����]�(�]���•�� �š�Z���� �Œ���o���š�]�À�����Á���]�P�Z�š�•���}�(�� ���À�•�•��
metrics in the POMDP instantaneous reward. The considered metrics are Impact, Availability and
Exploitability and comprise the security risk part of the reward.

�d�Z�����•���Œ�À���Œ�[�•���•�š���š���������v�����������o�š���Œ�������µ�•�]�v�P���š�Z�������W�/���W�K�^�d�������o�o���^�l�‰���Œ���u���š���Œ�•�_���~�•���������W�/���•�‰�����]�(�]�����š�]�}�v�•���Á�Z�]���Z�����Æ�‰�����š�•��
a message in json format the keys of which correspond to the available parameters in the state and the values
correspond to the desired new values. Parameters not included in the message are kept the same. Any other
API call to the server will keep these parameters the same.

When instantiated the server expects to receive an attack graph specification message in json format through
�š�Z�����^�l�µ�‰�o�}�����d�}�‰�}�o�}�P�Ç�_�����‰�]�������o�o���~�•������ ���W�/���•�‰�����]�(�]�����š�]�}�v�•�X���d�Z�����u���•�•���P���� �]�v���o�µ�����•�� �]�v�(�}�Œ�u���š�]�}�v�������}�µ�š���š�Z���� ���š�š�����l��
graph topology, the goal conditions and the associated IP addresses and ports for each node. This information
is leveraged by the iIRS decision engine server to internally construct the data structures necessary for
running the simulations. The goal conditions are nodes with an increased security cost typically denoting a
severe security breach (e.g. root access to machine). The IP addresses and ports are used to match the attack
graph exploits to the received security alerts from the IDS (when these arrive).

The iIRS decision engine is initiated on receipt of an attack graph. However, the attack graph evolves in time
as new devices appear in the local network or get removed. The graph generator engine updates the topology
of the attack graph when appropriate and makes a new call to the decision engine to update the information
�Z���o�����(�}�Œ���Œ�µ�v�v�]�v�P���•�]�u�µ�o���š�]�}�v�•�X���K�v���•�µ���Z���•�µ���•���‹�µ���v�š�������o�o�•���}�(���^�l�µ�‰�o�}�����d�}�‰�}�o�}�P�Ç�_���š�Z�����������]�•�]�}�v making engine will
kill all processes running and store the belief on the attack propagation through the system. Simulations on
the new attack graph will immediately start running. Depending on the differences between the old and new
attack graphs information for the previous belief may be utilized.

After receiving the attack graph, the server will make an API call to the iIRS graph generator engine at the
���v���‰�}�]�v�š�� �^�l���š�š�����l�z�P�Œ���‰�Z�l�Œ���u�����]���š�]�}�v�•�l���o�o�_�U�� �Á�Z�]���Z�� �Á�]�o�o�� �Œ���š�µ�Œ�v�� �š�Z���� ���À���]�o�����o���� �Œ���u�����]���š�]�}�v�� �����š�]�}�v�•�� ���v���� �š�Ze
associated attack graph nodes that they affect. These are received in json format. After the actions are
received the server will request a security alert from the IDS and once this is obtained, the server will start
running simulations to compute the optimal remediation action at the current belief. The simulation
�‰���Œ���u���š���Œ�•�����Œ�����•�‰�����]�(�]���������Ç���š�Z�����•���Œ�À���Œ�[�•���•�š���š���X

When the minimum number of simulations has been completed the server returns the computed optimal
policy at the local belief. In particular, this is passed to the iIRS - graph generator engine though the API call
�^�l���š�š�����l�z�P�Œ���‰�Z�l�Œ���u�����]���š�]�}�v�•�l���o�o�_�X���E�}�š�����š�Z���š���š�Z�����•���Œ�À���Œ���P���v���Œ���š���•���u���v�Ç���‰�Œ�}�����•�•���•���(�}�Œ���Œ�µ�v�v�]�v�P���•�]�u�µ�o���š�]�}�v�•�X��
Each process repeatedly computes a simulated trajectory and updates the values of nodes on a shared attack
�P�Œ���‰�Z���}���i�����š���Z���o�����]�v�š���Œ�v���o�o�Ç���]�v���š�Z�����•���Œ�À���Œ�X���d�Z�����v�µ�u�����Œ���}�(���‰�Œ�}�����•�•���•���]�•���•���š�����Ç���š�Z�����^�u���Æ�z�‰�Œ�}�����•�•���•�_���‰���Œ���u���š���Œ��
and is by default the minimum between 16 and the number of cores in the host machine. Note also that the
number of cores in �š�Z�����Z�}�•�š���u�����Z�]�v�����]�•�����o�Á���Ç�•�����Z�}�•���v���]�(���š�Z�����•�‰�����]�(�]�������^�u���Æ�z�‰�Œ�}�����•�•���•�_���‰���Œ���u���š���Œ���]�•�������}�À����
it.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 44

5.5 Application programming interfaces
The structure of messages exchanged both internally (by the iIRS subcomponents) and externally (between
Cyber-Trust components) via the information bus is presented in this subsection.

 {
 �i�•�‘�—�”�…�‡�j�[���i�•�•�ƒ�”�–�O�‰�ƒ�–�‡�™�ƒ�›�O�•�‘�†�—�Ž�‡�O�‹�†�j�Y
 �i�–�›�’�‡�j�[���i�‹�•�ˆ�‘�”�•�ƒ�–�‹�‘�•�O�„�—�•�O�–�‘�’�‹�…�j�Y
 �i�–�‹�•�‡�•�–�ƒ�•�’�j�[���—�•�‹�š�O�‡�’�‘�…�Š�Y
 �i�’�ƒ�›�Ž�‘�ƒ�†�j�[���‡
 �i�–�‡�•�–�j�[���i�…�‘�•�–�‡�•�–�j
 },
 �i�•�‹�‰�•�ƒ�–�—�”�‡�j�[���‡
 �i�ƒ�Ž�‰�j�[���i�ƒ�Ž�‰�‘�”�‹�–�Š�•�O�•�ƒ�•�‡�j�Y
 �i�•�‹�‰�j�[���i�„�ƒ�•�‡�O�m�k�O�‡�•�…�‘�†�‡�†�O�•�‹�‰�•�ƒ�–�—�”�‡�j
 }
}

This structure contains information that permits the identification of the originating source (the smart
gateway device ID), the information bus topic the message is posted to, the timestamp allowing identification
of old and possibly expired information, and a section containing the digital signature of its contents to detect
any data tampering attempts �t see Table 5-8.

Table 5-8. Generic header information in Cyber-Trust asynchronous messages

Field Description Type Example

source The ID of the smart gateway the iIRS runs on. String -

type Predefined keyword to identify the information
bus topic on which the message is posted.As
defined in the information bus specification.

�^�v���Á�À�µ�o�v���Œ�����]�o�]�š�]���•�—�U
�^�u�]�š�]�P���š�]�}�v�_�U
�^�µ�‰�����š���]�v�(�}�_�U �^���o���Œ�š�_

timestamp The timestamp generated at response-time in
UNIX epoch format.

Number 1578832835

payload The contents of the message. Object -

signature Payload signature information.

signature/alg The algorithm to sign the payload in the format:
�,���•�Z���o�P�}�Œ�]�š�Z�u���=���^�t�]�š�Z�_���=�����v���Œ�Ç�‰�š�]�}�v���o�P�}�Œ�]�š�Z�u�X

String �^�•�Z���î�ñ�ò�t�]�š�Z�Z�^�����v���Œ�Ç
�‰�š�]�}�v�_

signature/sig The signature of the payload in Base64 encoding. -

5.5.1 iIRS Attack Graph Generator (iRG)

All JSON messages originating from the iRG contain an extra structure included in the payload of the
previously presented structure. This structure provides further information about the API version of the iRG

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 45

that could be used programmatically to detect changes to the API, and about the status of the call: whether
the process was successful or failed including an error message intended for the user or for debugging
purposes (see also Table 5-9).

 {
 �i�•�‘�—�”�…�‡�j�[���i�•�•�ƒ�”�–�O�‰�ƒ�–�‡�™�ƒ�›�O�•�‘�†�—�Ž�‡�O�‹�†�j�Y
 �i�–�›�’�‡�j�[���i�‹�•�ˆ�‘�”�•�ƒ�–�‹�‘�•�O�„�—�•�O�–�‘�’�‹�…�j�Y
 �i�–�‹�•�‡�•�–�ƒ�•�’�j�[���—�•�‹�š�O�‡�’�‘�…�Š�Y
 �i�’�ƒ�›�Ž�‘�ƒ�†�j�[���‡
 �i�ƒ�’�‹�j�[���ƒ�’�‹�O�˜�‡�”�•�‹�‘�•�Y
 �i�”�‡�•�—�Ž�–�j�[���‡
 �i�•�–�ƒ�–�—�•�j�[���i�����j�Y
 �i�•�‡�•�•�ƒ�‰�‡�j�[���i�•�‡�•�•�ƒ�‰�‡�O�ˆ�‘�”�O�–�Š�‡�O�…�ƒ�Ž�Ž�‡�”�j
 },
 �i�–�‡�•�–�j�[���i�…�‘�•�–�‡�•�–�j
 },
 �i�•�‹�‰�•�ƒ�–�—�”�‡�j�[���‡
 �i�ƒ�Ž�‰�j�[���i�ƒ�Ž�‰�‘�”�‹�–�Š�•�O�•�ƒ�•�‡�j�Y
 �i�•�‹�‰�j�[���i�„�ƒ�•�‡�O�m�k�O�‡�•�…�‘�†�‡�†�O�•�‹�‰�•�ƒ�–�—�”�‡�j
 }
}

Table 5-9. iIRS specific header information in Cyber-Trust asynchronous messages

Field Description Type Example

api The version of the iRG Server API in the format
�^�·�·�X�·�·�X�·�·�_�� ���v���� �^�·�·�X�·�·�X�·�·���_�� �(�}�Œ�� �����š���� �À���Œ�•�]�}�v�•�X To
track and detect if updates to the JSON structure
(in the payload) were made.

String �^�î�X�ì�X�ì���_, �^�î�X�ì�X�í�_

result A structure containing information about the
process performed by the call.

Object -

result/status A binary status flag indicating whether an
operation was successful or failed. Its values are
�Œ���•�š�Œ�]���š�������š�}���^�K�<�_�����v�����^���Z�Z�K�Z�_�X

String �^�K�<�_, �^���Z�Z�K�Z�_

result/message An explanatory message, intended for a human
caller, describing the status flag.

���Œ�Œ�}�Œ���u���•�•���P���•���•�š���Œ�š�]�v�P���Á�]�š�Z���š�Z�����‰�Z�Œ���•���W���^�/�v�š���Œ�v���o��
���Œ�Œ�}�Œ�_�� �Œ���(���Œ�� �š�}�� ���Œ�Œ�}�Œ�•�� ���}�v�����Œ�v�]�v�P�� �š�Z���� �]�v�š���Œ�v���o��
�‰�Œ�}�����•�•�� �}�(�� �š�Z���� �]�Z�'�� �•���Œ�À���Œ�� ���v���� ���}���•�v�[�š�� �]�v���]�����š����
errors on the part of the caller.

"Internal error, the
simulated attack graph
couldn't be
generated."

"The remediation ID=5
is invalid. There are
only 4 remediations
for that path ID=(0 to
3)."

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 46

The REST API calls supported by the iRG subcomponent (see Table 5-10) are separated in three major groups:

a) system calls (#1-3) providing information about the status of the iRG instance and triggering
operations that can be executed at any time (without disrupt�]�v�P���š�Z�����]�Z�'�[�•���v�}�Œ�u���o���}�‰���Œ���š�]�}�v�•�V

b) pre-initialization calls (#6-12) which upload the required data to generate the attack graph model;
and

c) post-initialization calls (#4, #5 and #15-26), calls requiring a successful system initialization (via calls
#13 or 14) and session tracking using cookies.

As indicated by the last two call groups, the iRG usage workflow starts with the posting of the required
information by the A16 component via the pre-initialization calls; continues with the system initialization
calls (#4 and #5) providing a session cookie to the caller; and finishes with the post-initialization calls which
provide session-specific data (e.g. the attack graph, its remediation actions, etc.).

Table 5-10. The REST API calls supported by the iRG

REST Endpoint Description REQ_ID and
Use Cases

1 GET
/system/test

Test call that generates a generic response, for
connectivity testing purposes.

2 GET
/system/info

Retrieves information about the iRG instance.

3 GET
/system/database/update

Updates the internal remediation DB of iRG with
the most recent information from the eVDB.

FR81
UCG-18-06

4 GET
/topology

Retrieves the network topology in XML form. UCG-06-07

5 GET
/topology/hosts

Retrieves the list of network hosts (incl. their
security requirements).

FR55
UCG-04-02
UCG-04-03

6 POST
/topology/hosts

Sets the security requirements of network hosts.

7 POST
/topology/net-ip

Sets the IP ranges (in CIDR format) of the
network(s) that are considered during the network
topology model construction. Used by A16 to help
the iRG filter its results.

FR76
UCG-15-01

8 POST
/topology/vuln-scan-report

Uploads the vulnerability scan report results. Used
by A16 to report hosts�[vulnerability information.

9 POST
/topology/hosts-interfaces

Uploads the host descriptions, incl. their network
interface information, their IP addresses, etc. Used
by A16 to report the characteristics of all network
hosts.

10 POST
/topology/vlans

Uploads the description of each subnetwork, incl.
the address of its gateway, its address space, etc.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 47

Used by A16 to report all subnetworks covered by
the smart gateway module.

11 POST
/topology/flow-matrix

Uploads a matrix describing all host connections,
even across subnetworks. Used by A16.

12 POST
/topology/routing

Uploads the routing tables of all subnetworks. Used
by A16 to report interconnectivity between the
various subnetworks.

13 GET
/initialize

Triggers the iRG initialization procedure and
generates the attack graph using the data stored in-
memory (either by disk files, or by the data
uploaded by calls 7-12).

14 POST
/initialize

Triggers the iRG initialization procedure and
generates the attack graph using the XML already
generated XML topology provided in the request.

15 GET
/attack-graph

Retrieves the MulVAL-generated attack graph. UCG-06-07

16 GET
/attack-graph/score

Returns the initial risk score of the attack graph. UCG-15-01
UCG-15-02

17 GET
/attack-graph/topological

Retrieves the topological form of the attack graph.
This form presents the attack graph in terms of
attacks applicable directly on network hosts and
the ways an attacker may move between hosts.

UCG-06-07

18 GET
/attack-graph/remediations

Get all actionable remediations (active remediation
actions) for the whole attack graph. This mostly
concerns the application of firewall rules to solve a
part of the attack graph.

UCG-18-06

19 POST
/attack-graph/remediations/
block-nodes

Get actionable remediations (active remediation
actions) to block a list of attack graph nodes. This
mostly concerns the application of firewall rules (as
does call #18) to solve the specified nodes.

20 GET
/attack-path/list

Retrieves all the generated attack paths and their
individual risk scores.

UCG-06-07

21 GET
/attack-path/number

Retrieves the total number of attack paths.

22 GET
/attack-path/{id}

Retrieves a specific attack path and its individual
risk score.

23 GET
/attack-path/{id}/topological

As in call #22, but in topological form.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 48

24 GET
/attack-path/{id}/
remediations

Retrieves all remediations (active and proactive)
for the specified attack path.

UCG-18-06

25 GET
/attack-path/{id}/
remediation/{id}

Retrieve the details of a specific remediation action
for a specific attack path.

26 GET
/attack-path/{id}/
remediation/{id}/validate

Calculate the new attack graph after the
enforcement of a specific remediation action for a
specific attack path.

5.5.2 iIRS Decision Making Engine (iRE)

The communication with the iRE is performed by means of REST API call exchanging data in JSON format. The
endpoints are illustrated below in Table 5-11.

Table 5-11. The REST API calls supported by the iRE

REST Endpoint Description REQ_ID and
Use Cases

1 GET
/parameters

Get current parameters values UCG-04-02

2 POST
/parameters

Set parameter values UCG-04-02

3 POST
/uploadTopology

Upload an attack graph for inference; Initiate
decision making engine

UCG-15-02
UCG-18-05

4 GET
/getBelief

Get current belief of system state UCG-15-02
UCG-15-04

5 GET
/alerts

Communication with the IDS UCG-16-03

5.6 Technology Stack
The list of key technologies and tools utilized by all components of the iIRS�v namely the iIRS Attack Graph
Generator (iRG), the iIRS Decision-making Engine (iRE) and the iIRS Client (iRC)�v are presented in this section
and are shown in Table 5-12.

Table 5-12. Technology stack used in iIRS

Tool Version Details Subcomponent

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 49

Debian-based OS Any A minimal Ubuntu 14.04 LTS image
(phusion/baseimage:0.9.16) is used to build
the Docker images.

iRG Server,
iRG Client

Git Most recent Required to clone the iIRS repository. iRG Server,

iRG Client
FIWARE CyberCAPTOR 4.4.3 The iRG Server is based on the CyberCAPTOR

Server and the iRG Client is based on the
CyberCAPTOR Client.

Java 1.7 1.7.0_201 Both the iRG Server and MulVAL are coded in
Java; MulVAL requires this exact version.

iRG Server,
MulVAL

Apache Tomcat 7 7.0.52.0 Java servlet container providing the iRG Server
REST API.

iRG Server

Apache Maven 3 3.0.5 Maven is used to manage the required Java
libraries required to build the iRG Server.

iRG Server

SQLite 3 3.8.2 An SQLite DB is used to store information
about vulnerabilities and their remediations.

iRG Server,
Data Extraction
Subsystem

MulVAL Cyber-Trust
Git repo

Generates the attack graph using a set of
rules, written in Datalog, which is then parsed
by the iRG Server.

iRG Server,
MulVAL

XSB (Prolog/Datalog) 3.6 The Datalog engine on which MulVAL is based
upon.

MulVAL

gcc, g++, make, flex,
bison

Most recent Required to build both XSB and MulVAL. MulVAL

Data Extraction
Submodule

Cyber-Trust
Git repo

Required to parse and produce the XML
topology files required from the iRG Server.

iRG Server,
Data Extraction
Submodule

Python 3 > 3.4 The Data Extraction Submodule is coded in
Python.

Data Extraction
Submodule

PIP for Python 3 > 1.5 Python 3 package manager. Data Extraction
Submodule

SQLAlchemy
(Python Library)

0.9.4 An object-relational mapper used by the Data
Extraction Submodule to manage the SQLite
DB.

Data Extraction
Submodule

netaddr
(Python Library)

0.7.11 Provides functionality for Level 3 (IPv4 and
IPv6) and Level 2 (MAC) network addresses.

Data Extraction
Submodule

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 50

AngularJS
(JavaScript Library)

> 1.3.15 The iRG Client makes extensive use of the
Angular JS framework.

iRG Client

D3
(JavaScript Library)

Any Provides extensive graph visualization
capabilities used to produce the attack graph
visualizations.

iRG Client

Bootstrap Framework > 3.3.5 The base on which the responsive web
interface of the iRG Client is built upon.

iRG Client

Flask (Python Library) Most Recent Used for DME API IRE Server

graphviz Most Recent Used for visualization of attack graph at DME
client

iRE Server,
iRE Client

5.7 Physical architecture
All iIRS subcomponents are designed to be deployed as Docker images. This allows them to be completely
separated and helps contain possible security attacks within each subcomponent Docker image.

�x two Docker images of iRG: iRG Server and iRG Client (which constitutes the base of the iRC) and

�x two Docker images of iRE: iRE Server and iRE Client, are deployed currently on two different virtual
machines on the OTE testbed.

This allows further separation on the development of iRG and iRE, and proves that each subcomponent can
run smoothly on independent (connected) systems.

Both machines on the OTE testbed run on Ubuntu version 18.04 LTS and are equipped to use two CPU cores,
4GiB of RAM and 32GiB of storage. Connection to the VMs on which the A16, A04g, A17, and eVDB run, is
required during the initial inter-module connection tests and connection to the information bus will be a
requirement during the (current) integration phase.

5.7.1 iRG Docker Images

The iRG Docker images follow the same two-stage image creation process. The first stage requires the private
SSH cryptographic keys to be transferred and the official (currently private) Cyber-Trust GitLab repo is cloned.
The second stage follows a similar process to the one of the FIWARE CyberCAPTOR Docker image creation,
but with changes in the source of the code (as it now resides in the memory storage of the first stage), the
source of dependencies (with added SHA-256 integrity checks), and the source of updated version of the
Remediation DB (currently hosted by UOP).

This two-stage process ensures that the private cryptographic keys and any other sensitive artefacts ���Œ���v�[�š��
present in the final Docker image, the second stage of the process.

Another significant change is the addition of a deliberate way to break the Docker cache, used during
development, based on the current (at the time of building the Docker image) date. This saves time when
building the Docker image multiple times in succession, as the image only repeats the necessary steps to
rebuild the main iRG Server Java application or assemble the iRG Client HTML, JS and CSS files.

The Docker commands to build and execute the containers follow, showcasing the usage of the deliberate
Docker cache invalidation, the transfer of the private SSH keys required to clone the Git repository, and the
ports each container uses (port 10000 for the iRG Server and port 8880 for the iRG Client).

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 51

 # To clone the Cyber -Trust Git repo:
git clone git@gitlab.com:cybertrust/tool-development/intellig ent-intrusion-
response.git
cd ./intelligent -intrusion-response

To build the iRG Server:
sudo docker build \
 -- build -arg CACHE_DATE="$(date)" \
 -- build -arg SSH_PRIVATE_KEY="$(cat ~/.ssh/id_rsa)" \
 -- build -arg GIT_BRANCH="$(git symbolic-ref -- short HEAD)" \
 -- tag ag-engine-server ./attack- graph -generator/server/container/

To build the iRG Client:
sudo docker build \
 -- build -arg CACHE_DATE="$(date)" \
 -- build -arg SSH_PRIVATE_KEY="$(cat ~/.ssh/id_rsa)" \
 -- build -arg GIT_BRANCH="$(git symbolic-ref -- short HEAD)" \
 -- tag ag-engine-client ./attack- graph -generator/client/container/

To execute both containers in the background:
sudo docker run - d -- name ag-engine-server - p 10000:8080 ag -engine- server
sudo docker run - d -- name ag-engine-client - p 8880:80 ag - engine -client

5.7.2 iRE Docker Images

The deployment of the iRE components, is achieved through docker on the OTE testbed. The iIRE engine is
deployed on a virtual machine. The server listens on port 17891 while the visualization content is served on
port 4200. Internal communication between the iIRE server and client is performed through port 8088. The
server utilizes two CPU cores and 4GB of RAM.

5.8 User Interface
The iIRS has its own, independent of Cyber-�d�Œ�µ�•�š�[�•�� �‰�o���š�(�}�Œ�u�U�� �µ�•���Œ�� �]�v�š���Œ�(�������X�� �d�Z����client component of iRG
communicates with the iRG server. REST API calls as described in Section 5.5 offer the information needed
for the visualization. The user can initialize the Attack Graph Generator by uploading the topology XML file
to the home page (see Figure 5-7). When the attack graph is successfully initialized, the client responds with
an appropriate message.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 52

Figure 5-7. iRG Client �t the initialization page

The Configuration page provides information regarding the Hosts as well as the remediation and the user can
adjust the criticality associated with each machine (see Figure 5-8). Hosts were produced during the
initialization procedure, with the rest of data shown in (5.8). Patch and Firewall �t Rule radio buttons were a
function provided by the FIWARE CyberCAPTOR project. Our remediations are done on the Server part of the
iRG and Firewall Rules are proposed by the iRE.

Figure 5-8. iRG Client �t the configuration page

The Attack Graph page shows the topological and logical form of the network (see Figure 5-9 and Figure
5-10). In the logical form the attack graph is represented by circles of specific colors with each color being a
different type of node. Orange stands for LEAF node, red for LEAF with Vulnerability, blue for AND node and
light blue for OR. By hovering over a node, information such as the name, metric and rule fact can be seen.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 53

Figure 5-9. iRG Client �t the topological view of the attack graph page

Figure 5-10. iRG Client �t the topological view of the attack graph page

The Attack Path page shows almost the same data as the Attack Graph page regarding the visualization part
(see Figure 5-11). In the topological form, the target machine can be seen. The user can select between the
different available attack paths and there �]�•�����v���]�u�‰�����š���u���š���Œ���š�}���u�����•�µ�Œ�����š�Z�����‰���š�Z�[�•���•���À���Œ�]�š�Ç�X

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 54

Figure 5-11. iRG Client �t the attack path page

Each path has its own remediation options presented right down below the graph visualization (see Figure
5-12). The remediation may provide multiple actions to be taken, in order to prevent the attacker from
reaching the goal on the associated attack path. Those actions can be either a firewall �t rule or a solution
provided by the NVD. As seen at 5.4.2 - remediation DB, we keep the Patch, Vendor Advisory and Third-party
Advisory links regarding the vulnerabilities.

Figure 5-12. iRG Client �t the suggested remediation actions

As mentioned in Section 5.3.4, the iIRS decision engine client is a simple web interface for visualizing the
propagation of simulated attacks, the belief on the systems security state and the computed policy for testing
and development. It only communicates with the decision making server and obtains any other relevant
information about the system including security alerts and attack graph topology from there. The
communication occurs through a web socket which by default is specified by the IP address of the server and
by port 8088. The actual rendering of graphics is done by the server and is propagated to the client in svg
format. The visualization is composed of 4 main parts (see also Figure 5-13):

�x �š�Z�����•�Ç�•�š���u���•�š���š�������v�������P���v�š�•�[�������š�]�}�v�•�U

�x the belief state,

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 55

�x the reward curves, and

�x the alerts received.

When combined, these provide all interesting information regarding the state of the system for the purposes
of testing and monitoring.

Figure 5-13. The dedicated user interface of the iRE client

�K�v���š�Z�����‰���P���[�•���u���]�v���•���Œ�����v���š�Á�}��visualizations of the current attack graph are displayed. The left one encodes
�]�v�(�}�Œ�u���š�]�}�v���}�(���š�Z���������š�µ���o���•�Ç�•�š���u���•�����µ�Œ�]�š�Ç���•�š���š���U���š�Z�������š�š�����l���Œ�[�•�������š�]�}�v�•�U���š�Z�����������]�•�]�}�v�����v�P�]�v���[�•�������š�]�}�v�U�����v�����š�Z����
true attacker type. Circular nodes of the graph represent security condition and their colour indicates
whether they are compromised. In particular, red colour indicates a compromised security condition while
black colour indicates uncompromised security conditions. Pentagons represent hyperedges of the attack
graph which correspond to exploits. Directed arrows display the dependencies between exploits and security
���}�v���]�š�]�}�v�•�X���d�Z�������}�o�}�µ�Œ���}�(���š�Z�����‰���v�š���P�}�v�•���Œ���‰�Œ���•���v�š���š�Z�������š�š�����l���Œ�[�•�����v�����������]�•�]�}�v�����v�P�]�v���[�•�������š�]�}�v�•�X���/�v���‰���Œ�š�]���µ�o���Œ�U��
orange colour indicates an attacker attempt on an exploit whereas green colour represents an exploit blocked
by the system. If a particular exploit is both attempted and blocked, this is represented with blue colour.

�d�Z���� �Œ�]�P�Z�š�� �P�Œ���‰�Z�� �Œ���‰�Œ���•���v�š�•�� �š�Z���� �•�Ç�•�š���u�[�•�� �����o�]���(�� �}�v�� �]�š�•�� �•�����µ�Œ�]�š�Ç�� �•�š���š���� ���v���� ���š�š�����l���Œ�� �š�Ç�‰���X Darker red colours
illustrate increased confidence that a particular security condition is compromised while lighter shades
indicate less confidence. The same goes for the attacker type which is represented by the squares adjacent
to the belief graph.

On the left side bar a plot of the received system reward is displayed. As the decision engine takes actions
during a simulated attack, instantaneous rewards are discounted and added to trace a reward curve. Steeper
curves (increasing rapidly during the simulation start) indicate that the decision engine makes mistakes at
�����Œ�o�Ç���•�š���‰�•�X���d�Z�������µ�Œ�À���[�•�����•�Ç�u�‰�š�}�š�����]�•�������•���u�‰�o�����~�]�X���X���(�}�Œ�������P�]�À���v���š�Œ���i�����š�}�Œ�Ç�•���(�Œ�}�u���š�Z�������}�u�‰�µ�š�������‰�}�o�]���]���•���À���o�µ���X��
On average, the value of the asymptote will be equal to the value of the initial belief under the computed
policy.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 56

Below the reward plot some logging information is displayed. Finally, on the top of the main screen the
�•�Ç�•�š���u�[�•�� ���o���Œ�š�•�� ���Œ���� ���]�•�‰�o���Ç�����X�� �Z�������]�À������ ���v���� �v�}�v-received alerts are displayed in red and grey colour
respectively.

The attack visualization occurs in discrete time steps in coherence with the mathematical model of the attack
which is a discrete time partially observable Markov decision process. As new steps are completed in the
simulation the page automatically updates the displayed information. Slide bars are provided, which allow
the user to run back to previous time steps if needed. This is very convenient for assessing the computed
policy of the decision engine. One slide bar is provided above each graph and the reward plot each controlling
the displayed information of the component below it. The system alerts are controlled by the Real State
�,�]�•�š�}�Œ�Ç���•�o�]�����������Œ���o�}�����š�������Œ�]�P�Z�š�������}�À�����š�Z�����o���(�š�����š�š�����l���P�Œ���‰�Z���}�v���š�Z�����‰���P���[�•���u���]�v���•���Œ�����v�X

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 57

6. Unit testing approach
Unit testing refers to the process of verifying that the individual artefacts comprising the software component
operate as expected. These artefacts can be individual units of source code, sets of one or more computer
programs together with associated control data, as well as usage and operating procedures. The scope of
verification in unit testing should involve both the externally observable behaviour of the method and any
side effects that the unit has, such as updating repositories.

The artefacts comprising a software component are classified in a number of core layers as shown below.

�x ���}�u�‰�}�v���v�š�[�• REST API: The API exposed by a Cyber-Trust component to the external world.

The code in this layer is responsible for intercepting incoming REST API requests, extracting the input
parameters from the protocol-specific message, passing the request to the appropriate business logic
module (typically to the service layer), retrieving the results, packing results back into protocol-
specific messages and returning the result to the requesting client.

�x Component�[�• service layer: Defines the ���}�u�‰�}�v���v�š�[�• boundary to the outside world by encapsulating
the core business logic.

Since the functionality of the component is solely exposed through the associated REST API, it is
expected that there is a one-to-one mapping between operations exposed by the ���}�u�‰�}�v���v�š�[�• REST
API and the elements exposed by the service layer.

�x ���}�u�‰�}�v���v�š�[�•�� ��omain: Contains the objects realising the business logic of the component (e.g. the
attack graph object in the case of the iIRS).

�x ���}�u�‰�}�v���v�š�[�•���‰ersistence: Serves persistent domain objects to the backend of the system.

The persistence layer manages the domain objects, which however are not necessarily all the domain
objects. This layer may perform data mapping to deal with the representational differences between
the repositories layer and the external data repositories (e.g. databases) where the domain objects
actually persist.

�x ���}�u�‰�}�v���v�š�[�•�� ���•�Ç�v���Z�Œ�}�v�}�µ�•�� ���}�u�u�µ�v�]�����š�]�}�v�� �o���Ç���Œ�W Defines the push notifications sent to other
components, as well push notifications from other components that are received and processed

The asynchronous communication layer manages the creation and consumption of asynchronous
notification messages, exchanged through Cyber-Trust�[s message bus. A module's core business logic
dictates that such messages should be created when some important information about an event or
a condition must be made available to other modules; conversely, when such information is needed
from other modules, relevant asynchronous messages are intercepted by the communication layer
and passed to the module's core business logic for processing.

Unit testing of each Cyber-Trust component included all the above layers, where the main approach taken is
briefly documented in the following sections.

6.1 Unit tests for the REST API layer
The REST API layer in some of the components (e.g. the TMS) was automatically generated by an appropriate
piece of software, which was employed in the modelling and development process (the Swagger modelling
tool was used that generates the Spring framework skeleton code, which employs standard Spring framework
libraries). In such cases, the code within the REST API layer did not require extensive testing. In other cases
(e.g. the crawling service, the eVDB, and the iIRS) the REST API of the open source software tools used was
extended to cover the needs of Cyber-Trust, and therefore required more thorough testing. In both cases,
testing the parameter validation and the return values were found to be quite useful in order to validate that
the component properly implements the documented functionality.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 58

6.2 Unit tests for the service layer
The functionality exposed in �������Z�����}�u�‰�}�v���v�š�[�•��service layer was targeted by unit tests. To promote efficiency
and isolation in unit testing at this level, it was recommended that any dependencies to other external
services and data repositories be mocked, using stubs and pre-determined data. The unit tests developed for
the service layer investigated whether the correct operation was ensured using valid data, whilst they also
considered the response of a Cyber-Trust component to invalid inputs and business logic errors.

6.3 Unit tests for the domain layer
Classes and methods within the domain layer were targeted by unit tests. Typically, the classes packed within
a single component have high cohesion and the operations of one class depend on other classes within the
component. The approach taken during the unit testing at this layer was that such dependencies are not
mocked; however, dependencies to other Cyber-Trust components were mocked. Likewise, the unit tests
developed for the domain layer tested for correct operation using valid data, invalid inputs as well as business
logic errors.

6.4 Unit tests for the persistence layer
Classes and methods in the persistence layer were targeted by unit tests. Each operation in the persistence
layer typically requires no other information than the objects to be managed (and possibly some elementary-
type parameters). Therefore, each operation in the persistence layer were tested in isolation from the other
parts of a component.

6.5 Unit tests for the asynchronous communication layer
Classes and methods in the asynchronous communication layer, for the modules that such layers had been
developed, were targeted by unit tests. At this stage, asynchronous communications layers of individual
components were examined in isolation, with the role played by peer communication parties being mocked
(i.e. fake senders and receivers were created). Tests related to asynchronous communications and jointly
involving Cyber-Trust modules will be conducted at the integration phase.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 59

7. Conclusions
This document shows the current status of the Proactive Technology tools to be integrated into an
operational environment. In particular, the following tools, with a detailed technical description, have been
described:

1. Crawling service

2. Enriched Vulnerability DataBase (EVDB)

3. Trust Management Service

4. Intelligent Intrusion Response

These tools aim at improving the security of the Cyber-Trust platform through the collection and aggregation
of data and information from multiple sources.

It has been presented how these tools make the IoT devices network safer by preventing cyber-attacks
whenever possible, and aiming to mitigate the effects of unpredictable attacks.

The integrated prototype will be piloted and tested in Task T8.3 and needed adaptations, further to the
evaluation of the test will be performed.

D5.3 CYBER-TRUST proactive technology tools

Copyright Cyber-Trust Consortium. All rights reserved. 60

8. References

[1] F. Bao and Ing-Ray Chen. 2012. Dynamic trust management for internet of things applications. In
Proceedings of the 2012 international workshop on Self-aware internet of things (Self-IoT '12). ACM,
New York, NY, USA, 1-6. DOI=http://dx.doi.org/10.1145/2378023.2378025

[2] F. Bao, I. Chen and J. Guo, "Scalable, adaptive and survivable trust management for community of
interest based Internet of Things systems," 2013 IEEE Eleventh International Symposium on
Autonomous Decentralized Systems (ISADS), Mexico City, Mexico, 2013, pp. 1-7. doi:
10.1109/ISADS.2013.6513398

[3] �Z�X�����]�v�v���v���]�i�l�U�����š�����o�X�U���^���Œ���Z�]�š�����š�µ�Œ�������v���������•�]�P�v���•�‰�����]�(�]�����š�]�}�v�•: final�_�U�����Ç�����Œ-Trust, Deliverable D4.4, 2019

[4] A. Harth, Jürgen Umbrich, Stefan Decker: MultiCrawler: A Pipelined Architecture for Crawling and
Indexing Semantic Web Data. International Semantic Web Conference 2006: 258-271

[5] J. M. Hsieh, Steven D. Gribble, Henry M. Levy: The Architecture and Implementation of an Extensible
Web Crawler. NSDI 2010: 329-344

[6] N. Kolokotronis�U�� ���š�� ���o�X�U�� �^State-of-the-art on proactive technologies�_�U�� ���Ç�����Œ-Trust, Deliverable D5.1,
2019.

[7] K. Limniotis, ���š�����o�X�U���^�d�Z�Œ�����š�������š�}�Œ�•�[�����š�š�����l���•�š�Œ���š���P�]���•�_�U�����Ç�����Œ-Trust, Deliverable D2.5, 2018.

[8] V. Merekoulias et al., "A trust management architecture for autonomic Future Internet," 2010 IEEE
Globecom Workshops, Miami, FL, 2010, pp. 616-620, doi: 10.1109/GLOCOMW.2010.5700394

[9] ���X���D�]���Z�o�]�v�P�U���D�X���Z���•�}�µ�o�]�U�����v�������X���d���v���l���š�Ì�]�•�U���^�K�‰�š�]�u���o�������(���v�•�����‰�}�o�]���]���•���(�}�Œ���‰���Œ�š�]���oly observable spreading
�‰�Œ�}�����•�•���•���}�v�������Ç���•�]���v�����š�š�����l���P�Œ���‰�Z�•�U�_���]�v���W�Œ�}���X���î�v���������D���t�}�Œ�l�•�Z�}�‰���D�}�À�]�v�P���d���Œ�P���š�������(���v�•���U���î�ì�í�ñ�U���‰�‰�X��
67�t76.

[10] ���X���D�]���Z�o�]�v�P�U���D�X���Z���•�}�µ�o�]�U�����v�������X���d���v���l���š�Ì�]�•�U���^�����W�K�D���W�����‰�‰�Œ�}�����Z���š�}���š�Z�������Ç�v���u�]���������(���v�•�����}�(���>���Œ�P��-Scale
Cyber-�E���š�Á�}�Œ�l�•�X�_���/�������� �d�Œ���v�•�����š�]�}�v�•���}�v���/�v�(�}�Œ�u���š�]�}�v���&�}�Œ���v�•�]���•�� ���v���� �^�����µ�Œ�]�š�Ç�U���À�}�o�X���í�ï�U���v�}�X���í�ì�U���‰�‰�X���î�ð�õ�ì-
2505, 2018.

[11] M. Najork: Web Crawler Architecture. Encyclopedia of Database Systems 2009: 3462-3465

[12] T. H. Nguyen, M. Wright, M. P. Wellman, an���� �^�X�� �����À���i���U�� �^�D�µ�o�š�]-stage attack graph security games:
�,���µ�Œ�]�•�š�]���� �•�š�Œ���š���P�]���•�U�� �Á�]�š�Z�����u�‰�]�Œ�]�����o�� �P���u���� �š�Z���}�Œ���š�]���� ���v���o�Ç�•�]�•�U�_�� �]�v���W�Œ�}���X�� �����D���t�}�Œ�l�•�Z�}�‰���D�}�À�]�v�P�� �d���Œ�P���š��
Defense, 2017, pp. 87�t97.

[13] �E�X���W�}�}�o�•���‰�‰���•�]�š�U���Z�X�������Á�Œ�]�U�����v�����/�X���Z���Ç�U���^���Ç�v���u�]����security risk management using Bayesian attack g�Œ���‰�Z�•�U�_��
IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1, pp. 61�t74, Jan/Feb. 2012.

[14] �^�X���^�Z�]�����o���•�U�����š�����o�X�U���^�h�•���������•�����•�����v���Œ�]�}�•�_�U�����Ç�����Œ-Trust, Deliverable D2.3, 2018

[15] S. Skiadopoulos, et al., �^�d�Z�Œ�����š���•�Z���Œ�]�v�P���u���š�Z�}���•�W�����}�u�‰���Œ���š�]�À�������v���o�Ç�•�]�•�_�U�����Ç�����Œ-Trust, Deliverable D2.2,
2018

