

Advanced Cyber-Threat Intelligence, Detection, and

Mitigation Platform for a Trusted Internet of Things

Grant Agreement: 786698

D5.4 - Trust management service:

security and privacy

Work Package 5: Key proactive technologies

cyber-threat intelligence

Document Dissemination Level

P Public

CO Confidential, only for members of the Consortium (including the Commission Services)

Document Due Date: 30/04/2020

Document Submission Date: 29/04/2020

☒

☐

Co-funded by the Horizon 2020 Framework Programme of the European Union

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 2

Document Information

Deliverable number: D5.4

Deliverable title: Trust management service: security and privacy

Deliverable version: V0.1

Work Package number: WP5

Work Package title: Key proactive technologies and cyber-threat intelligence

Due Date of delivery: 30/04/2020

Actual date of delivery: 29/04/2020

Dissemination level: Public

Editor(s): Costas Vassilakis (UOP)

Contributor(s): Costas Vassilakis, Christos–Minas Mathas, Nicholas Kolokotronis

(UOP)

Stavros Shiaeles, Gueltoum Bendiab (UOPHEC)

Simone Naldini, Stefano Cuomo (MATH)

Reviewer(s): Olga Gkotsopoulou, Paul Quinn (VUB)

Michael Skitsas (ADITESS)

Project name: Advanced Cyber-Threat Intelligence, Detection, and Mitigation

Platform for a Trusted Internet of Things

Project Acronym Cyber-Trust

Project starting date: 1/5/2018

Project duration: 36 months

Rights: Cyber-Trust Consortium

Version History

Version Date Beneficiary Description

0.1 3/2/2020 UOP Table of contents and distribution of work.

0.2 22/2/2020 UOP First version of the trust computation algorithm.

0.3 9/3/2020 UOP Elaboration of the TMS internal architecture

(detailed view).

0.4 17/3/2020 UOP Reiteration on the state of the art of TMS

architectures and models and models.

0.45 21/3/2020 UOP Reiteration on the state of the art of TMS

implementations.

0.5 26/3/2020 UOP Second version of the trust computation algorithm

and first version of attack scenarios and validation.

0.6 2/4/2020 UOP Final version of the trust computation algorithm.

0.7 20/4/2020 UOP Final version of attack scenarios & first version of

tuning and evaluation.

0.8 26/4/2020 UOP Final version of the evaluation, first complete

version of the deliverable.

0.9 28/4/2020 VUB, ADITESS Reviewer comments received.

1.0 29/4/2020 UOP Accommodation of the reviewers’ comments and
submission of final version

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 3

Acronyms

ACRONYM EXPLANATION

AMPQ Advanced Message Queuing Protocol

APIs Application Programming Interface

BMA Bad-mouthing attack

BSA Ballot stuffing attack

CIDR Classes Inter-Domain Routing

CPE common platform enumeration

CPS Cyber-physical system

CT Cyber-Trust

CTI Cyber-Threat Intelligence

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerabilities Scoring System

D Deliverable

D2D Device-to-device

DB Database

DBMS Database Management System

DDoS Distributed denial-of-service

DHT Distributed Hash Table

DoS Denial-of-service

ENISA European Union Agency for Cybersecurity

ERNT Extended RPL Node Trustworthiness

eVDB Enriched vulnerability database

FR Functional Requirement

FTBAC Fuzzy approach to the Trust Based Access Control

GUI Graphic User Interface

ID Identification

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Service Provider

JNI Java Native Interface

JSON JavaScript Object Notation

KPI Key Performance Indicator

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 4

M Month

MAC Medium access control

MUD Manufacturer Usage Description

NFR Non-Functional Requirement

OOA On-off attacks

ORM Object-relational mapping

OSA Opportunistic service attack

PDR Packet delivery ratio

POJO Plain Old Java Object

QoS Quality of service

REST Representational State Transfer

RFID Radio frequency identification

RPL Routing Protocol for Low Power and Lossy Networks

SaaS Software as a service

SIoT Social Internet-of-Things

SLA Service-level agreement

SMA Sybil-Mobile attack

SOA Service oriented architecture

SoC System-on-chip

SOHO Small office/Home office

SPA Self-promotion attack

SQL Structured Query Language

T Task

TA Trust agent

TMS Trust Management Service

TPM Trusted Platform Module

UI User Interface

URL Uniform Resource Locator

VIP Verification of interaction proof

VM Virtual Machine

WP Work Package

WSN Wireless sensor network

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 5

Executive summary

In the context of IoT, the number of active subjects (devices, users and applications) for which security needs

to be regulated is extremely high, severely limiting the applicability of traditional security approaches, which

require explicit specification of authentication and authorization parameters for each of the active subjects.

To this end, trust-based solutions have been proposed; in the context of a trust-based approach, pairwise

and typically unidirectional trust levels between two entities are computed, and the computed trust level is

then used to moderate the interaction between devices, including the determination of allowable

communications or fine-grained access to information offered by different services, underpinning thus both

the security and privacy dimensions.

The Cyber-Trust architecture encompasses the Trust Management Service (TMS) module, which realizes an

authoritative entity for trust computation, maintenance and distribution. To accomplish this task, the TMS

synthesizes information from components of the Cyber-Trust platform, including the Profiling Service, the

Cyber-Defence service as well as the Network architecture and assets Repository (A16). Through this

information, the TMS synthesizes a comprehensive view on the device, considering the aspects of status

(corresponding to the device health level), behaviour (corresponding to the activities that the device has

detected to be involved in and an assessment of the compliance of these activities) and associated risk

(corresponding to the level of harm that can be caused by the device). Based on this view, it calculates a trust

score. To further exploit the information available in the Cyber-Trust platform towards the synthesis of a

comprehensive assessment of the devices’ trust levels, TMS modules may establish pairwise mutual trust
relationships to exchange trust information, while trust relationships between users can also be established

and propagated to the devices they own.

This deliverable reports on the design of the TMS implementation for the Cyber-Trust platform and its

assessment, providing information regarding (a) the state-of-the-art models reviewed, (b) the architectural

specification of the TMS and (c) the TMS evaluation, regarding the effectiveness under different attack

scenarios. The operation of the TMS is regulated by a number of parameters, and the effect of these

parameters on the formulation of trust levels is also examined.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 6

Table of Contents

1. Introduction ...10

1.1 Purpose of the document ..10

1.2 Relations to other activities in the project ...10

1.3 Structure of the document ..10

2. Trust management service ...12

2.1 Overview / objectives ..12

2.2 Functionality coverage...12

2.2.1 Related requirements ..12

2.2.2 Related use cases ...14

2.3 Technology update ..15

2.4 Application architecture ..15

2.5 Application programming interfaces ..16

2.5.1 REST APIs for managing device trust ..16

2.5.2 REST APIs for managing peer TMSs ..17

2.5.3 REST APIs related to risk management ...17

2.5.4 REST APIs related to trusted user management..17

2.5.5 REST APIs related to managing trusted entities ..18

2.6 Technology stack ...18

2.7 Physical architecture ...19

2.8 User Interface ..19

3. State of the art review..20

3.1 Trust management concepts and dimensions ..20

3.2 TMS models and architectures...21

3.2.1 Review of existing trust models ..21

3.2.2 Trust management architectures ...44

3.3 Trust Management System Implementations ..47

3.3.1 Soutei ..47

3.3.2 Trust guard ..48

3.3.3 pyKeynote/keynote library ...48

3.3.4 SAFE ..48

3.3.5 TMLib ..49

3.3.6 Cloud trust protocol daemon ...49

3.3.7 Retrust ...50

3.3.8 Systems in other domains of use ..50

3.4 Conclusions and directions ..52

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 7

4. Cyber-Trust TMS design ..53

4.1 Generic model ...53

4.2 Trust computation ...57

4.2.1 Computation of the status-based trust score ...57

4.2.2 Computation of the behaviour-based trust score ...58

4.2.3 Computation of the associated risk-based trust score ..59

4.2.4 Synthesizing the status-based, behaviour-based and associated risk-based scores61

4.2.5 Incorporating the trusted peer TMS-source based trust score ..62

4.2.6 Incorporating user-to-user trust relationships and computing the final trust score...........63

4.3 Detailed TMS architecture ...64

5. Attack scenarios ...67

5.1 Attacks against the TMS trust and risk computation mechanisms ..67

5.2 Attacks against the infrastructure protected by the Cyber-Trust architecture68

6. TMS evaluation, tuning and validation ...70

6.1 TMS evaluation..70

6.1.1 Resilience to attacks against the TMS trust and risk computation mechanisms70

6.1.2 Mitigation of attacks against the infrastructure protected by the Cyber-Trust architecture

 74

6.2 TMS parameter tuning and performance ...79

6.2.1 TMS parameter setting ..79

6.2.2 Performance issues ..85

6.3 TMS validation...88

6.3.1 TMS response to detected attacks ...88

6.3.2 TMS contribution to proactive defence ..92

7. Conclusions ..93

8. References ..94

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 8

Table of Figures

Figure 2.1. TMS high-level design ..15

Figure 2.2. TMS data view ...16

Figure 3.1. A centralized trust management system architecture ..44

Figure 3.2. Internal structure of a cluster [44] ...45

Figure 3.3. Integration of multiple clusters into a hierarchical trust management system [43]46

Figure 3.4. Components within a peer node participating in a TMS [46] ..46

Figure 4.1. The entities in the IoT and SOHO environments and their relationships53

Figure 4.2. Trust score composition dimensions and aspects...55

Figure 4.3. Cyber-Trust platform elements providing information to the TMS ...56

Figure 4.4. TMS: Outgoing information flows ..57

Figure 4.6. Detailed view of the TMS architecture ...64

Figure 6.1. Trade-off between blocking time of benign devices and periods at which malicious devices are

granted access: (a) low compliance-based trust level restoration rate (b) high compliance-based trust level

restoration rate ..80

Figure 6.2. Trade-off between blocking time of benign devices and periods at which malicious devices are

granted access when deviations of high magnitudes occur: (a) low nominality-based trust level restoration

rate (b) high nominality-based trust level restoration rate ..82

Figure 6.3. Trade-off between blocking time of benign devices and periods at which malicious devices are

granted access when deviations of low magnitudes occur: (a) low nominality-based trust level restoration

rate (b) high nominality-based trust level restoration rate ..83

Figure 6.4. Message processing time using only Hibernate level 1 cache ...86

Figure 6.5. Message processing time when the Hibernate level 2 cache is enabled86

Figure 6.6. Throughput of the TMS REST API ...87

Figure 6.7. TMS response to detected attacks ...89

Figure 6.8. Evolution of a deviant device’s trust, continuous deviations ..90

Figure 6.9. Evolution of a deviant device’s trust, occasional deviations ...91

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 9

Table of Tables

Table 2.1. Functional requirements and use-case references for the TMS ...12

Table 2.2. Non-functional requirements and use-case references for the TMS ..14

Table 2.3. Use-cases related to the TMS ..14

Table 2.4. REST APIs for managing device trust ...17

Table 2.5. REST APIs for managing peer TMS instances ...17

Table 2.6 REST APIs related to risk management ...17

Table 2.7. REST APIs related to trusted user management ..18

Table 2.8. REST APIs related to trusted user management ..18

Table 2.9. Technology stack and applied tools used for the implementation of the TMS18

Table 3.1. Overview of different trust models ...23

Table 3.2. Overview of trust-based attacks..24

Table 3.3. Overview of qualitative trust characteristics ...31

Table 4.1. Risk level computation ..60

Table 5.1. ENISA threat taxonomy branches relevant to Cyber-Trust ...68

Table 5.2. Observables related to the presence of attacks/security hazards ..69

Table 6.1. Attack/security hazard observables, relevant information utilised by the TMS and its effect on the

scores ...74

Table 6.2. Breakdown of message processing time within the TMS ...87

Table 6.3: CYBER-TRUST KPIs for the TMS and Administrative module ..88

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 10

1. Introduction

The Cyber–Trust project aims to develop an innovative cyber–threat intelligence gathering, detection, and

mitigation platform to tackle the grand challenges towards securing the ecosystem of IoT devices. In this

context, the concepts of trust and risk are central ones, being utilized in a multitude of functionalities: trust

and risk levels are computed for devices in the defended system perimeter, and these scores are utilized by

numerous components of the Cyber-Trust architecture to realize core platform functionalities, including

intelligence response to threats and user/security officer alerting. The Trust Management Component (TMS)

of the Cyber-Trust platform undertakes the task of computing the trust and risk scores for all devices, and

appropriately making these scores available to other components of the Cyber-Trust platform.

1.1 Purpose of the document

This deliverable report reports on the design, implementation and validation of the TMS, as well as on its

relation to the state-of-the-art in trust management systems, and more specifically:

• Which is the goal of the TMS and which are its functionalities?

• How are these functionalities accessible to other Cyber-Trust components?

• Which is the state-of-the-art in trust management and how does the Cyber-Trust TMS relates to it?

• Which specific algorithms are used for trust and risk score computation?

• What is the internal structure of the TMS?

• How can the TMS respond to different attacks typical in TMS systems and the IoT?

Furthermore, the trust and risk computation procedures necessitate data and information which are made

available by other Cyber-Trust components. This deliverable covers additionally the interrelationships

between the TMS and other components of the Cyber-Trust architecture.

1.2 Relations to other activities in the project

This document derives initially from D2.3, where the use case scenarios and the user requirements were

surveyed in, as well as from D2.4/D2.6 where the first/final version of user requirements were recorded.

Subsequently, D4.1/D4.4 presented the first/final version of the architectural positioning of the TMS within

the Cyber-Trust platform and the TMS high-level architecture and the relevant key functionalities and key

quality attributes. Finally, the state-of-the-art review performed in D5.1 and the initial version of the TMS

design incorporated in D5.3 provided the basis on which the detailed design, implementation and evaluation

presented in this deliverable were built. In the overall process of the design and implementation of the TMS,

the legal and ethical recommendations catalogued in D3.3, as well as the results documented in D3.4 (data

protection and privacy requirements; mitigation of risk related to the TMS development process) were

closely observed.

This deliverable provides input for D8.2, which will elaborate the integration between individual Cyber-Trust

components.

1.3 Structure of the document

The rest of this document is structured as follows: section 2 presents the trust management service,

describing its functionality (both in terms of user requirements covered and Cyber-Trust use cases), its

technological innovations with respect to the state of the art in trust management systems, a high-level

overview of its architecture, and the APIs through which the TMS functionality can be used. Additionally, the

technological stack used for the TMS implementation is presented, as well as prominent physical

architectures for the TMS deployment.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 11

Section 3 reiterates on the state of the art review performed in D5.1 [1], analysing the state of the art in trust

management. In this context, trust management models and architectures, as well as trust management

system implementations are examined.

Section 4 elaborates on the design of the TMS: firstly, the generic trust model employed by the TMS is

presented, followed by an in-depth presentation of the trust computation algorithm. The section concludes

with a detailed illustration of the TMS architecture.

Section 5 presents the attack scenarios against which the TMS will be evaluated, while section 6 presents the

tuning, evaluation and validation of the TMS considering the attack scenarios. Finally, section 7 concludes

the report.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 12

2. Trust management service

2.1 Overview / objectives

The objective of the trust management service [A05, A08] is to serve an authority within the Cyber-Trust

architecture which undertakes the following tasks:

• Consolidates observations on the status, behaviour and associated risk of devices into a

comprehensive trust score, which indicates the degree to which each device is deemed to be

trustworthy.

• Can be queried by other Cyber-Trust entities to provide the abovementioned assessments, for the

perusal of the entities. Indicatively, trust assessments can be used for the visualization of trust within

the network, for making decisions whether actions originating from or being directed to some device

should be allowed or not, for raising alerts to security officers and so forth.

• Provides timely notifications to other entities within the Cyber-Trust platform to alert them of

noteworthy events related to the level of trust associated with devices. In particular, demotions of

device trust level below some threshold and the restoration of previously demoted trust of devices

are emitted, allowing relevant components of the Cyber-Trust platform to take appropriate actions,

such as enabling or disabling defence mechanisms.

2.2 Functionality coverage

2.2.1 Related requirements

The TMS is involved in a number of scenarios of the Cyber-Trust platform, where the trust level of one or

more devices needs to be reassessed or consulted. In more detail, the TMS is involved in the following

scenarios:

• Monitoring and vulnerability assessment: when a device is found to deviate from normal behaviour

(or return to it after a period of deviation), or be vulnerable to new threats, the TMS triggers the

recomputation of the device’s trust level.

• Network-level attacks: when a network-level attack is identified, the TMS exploits the information

provided by the iIRS to adjust the trust value of involved devices.

• Device-level attacks: Similarly, when a device is involved in some attack, the TMS arranges for

recomputing the trust level associated with the device.

These user scenarios have co-shaped a number of functional and non-functional requirements. The relevant

functional requirements are described in Table 2.1, while the associated non-functional requirements are

described in Table 2.2.

Table 2.1. Functional requirements and use-case references for the TMS

REF_ID Description of implementation Use Case

FR9 Requirement: Every device connected to the Cyber-Trust platform has

visual representation of the Trust level (scoring) before the identification of

abnormal behaviour (e.g. cyber-attack)

Implementation: The TMS underpins this requirement by providing the

trust level of the device to the visualization module.

UCG-05-07,

UCG-05-05

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 13

FR10 Requirement: Every device connected to the Cyber-Trust platform has

visual representation of the Trust level (scoring) during abnormal behaviour

(e.g. cyber-attack)

Implementation: The TMS underpins this requirement by providing the

trust level of the device to the visualization module. The trust assessment is

updated synchronously as new data are received by the TMS, therefore the

visualization will reflect the evolution of the trust level.

UCG-05-07,

UCG-05-05

FR11 Requirement: Every device connected to the Cyber-Trust platform has

visual representation of the Trust level (scoring) after the mitigation of any

abnormal behaviour (e.g. cyber-attack). The TMS underpins this

requirement by providing the trust level of the device to the visualization

module. The trust assessment is updated synchronously as new data are

received by the TMS, therefore the visualization will reflect the evolution of

the trust level.

Implementation: The TMS underpins this requirement by providing the

trust level of the device to the visualization module.

UCG-05-07,

UCG-05-05

FR21 Requirement: The user will be informed for the importance of the alert

based on the overall Score of the device (it will be derived based on the

abnormal behaviour, detected vulnerabilities etc.)

Implementation: The TMS sends notifications when the trust level of device

is demoted beyond a certain threshold or restored. These notifications may

be exploited by other components, notably visualization and user

notification modules, to appropriately convey the information to the user.

UCG-06-01,

UCG-06-02,

UCG-13-01,

UCG-16-03

FR69 Requirement: The administrator (Trust DB) will be able to update the Trust

score of a device manually. The update will include at least three options:

Change status, Delete, Take offline. Field for additional information will be

provided (e.g. comments).

Implementation: A relevant API is provided, allowing authorized users to

explicitly set the trust level of the device. Explicitly set trust levels are not

directly modified by the trust score update procedure, however major

discrepancies between explicitly set and computed scores will raise alerts.

UCG-10-04

FR73 Requirement: The user will be able to request (through the UI) the trust

level of specific device(s)

Implementation: The TMS provides an API through which authorized

entities can retrieve the trust score of a device.

UCG-13-01

UP_FR8 Requirement: For each device users are going to visualise the reason for a

certain Trust Level Score.

Implementation: The TMS API will return, upon request, the base data that

contributed to the shaping of the reported trust level.

UCG-13-01,

UCG13-02

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 14

Table 2.2. Non-functional requirements and use-case references for the TMS

REF_ID Description of implementation Use Case

NFR43 Requirement: Prioritization of cyber-threats: the threats are ordered in

descending order of their score. The score will derive based on vulnerability

and impact attributes (technical impact, exploitability etc.)

Implementation: Stems directly from the implementation of the use case.

UCG-16-04

NFR21 Requirement: Creation of the Trust DB

Implementation: Instructions and/or automations for creating the TrustDB

will be provided.

-

NFR22 Requirement: Trust DB will store records only hashed data

Implementation: Data that are primarily stored in other databases will be

maintained as hashes with relevant pointers.

UCG-04-01

2.2.2 Related use cases

Table 2.3 lists the use cases related to the TMS and the provisions made by the component to support the

fulfilment of them.

Table 2.3. Use-cases related to the TMS

REF_ID Description of implementation

UCG-10-05 Use case: Manually curate device profile

Implementation: The TMS provides an API through which device trust scores can be

explicitly set.

UCG-13-01 Use case: Retrieve trust level from TMS

Implementation: Trust levels are computed by the TMS as relevant events occur and stored

in the trust database. The trust database realizes an API through which authorized entities

can retrieve the trust level assessments, either for a single device or for a bulk of devices.

UCG-13-02 Use case: Compute device trust level

Implementation: The TMS intercepts notifications sent by other Cyber-Trust platform

components, and exploits the information therein to compute the trust level. The

notifications are received through the Cyber-Trust system message bus.

UCG-15-02 Use case: Compute device risk level

Implementation: The TMS computes a new value for the risk level of a device. Information

about the current device trust level, the current status of network attacks and network

traffic related to the device (as compared with the baseline), the device vulnerabilities and

their exploitability, the device health level and views of peer-level TMSs are taken into

account to produce a comprehensive risk score.

UCG-16-04 Use case: Identify and prioritize cyber-threats

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 15

Implementation: Distinct cyberthreats are considered and their total impact on the

protected network and its resources is assessed, producing a per-cyberthreat score.

Cyberthreats are then ordered in descending score order to produce the result.

2.3 Technology update

The Cyber-Trust TMS extends the current TMS paradigms and implementations by considering additional

dimensions in the computation of the trust scores, notably the status of the devices and the associated risk.

For the computation of the associated risk, the business value of assets can be considered where available.

The TMS implementation will be able to adapt to its runtime environment: in resource-rich environments the

full capabilities of the TMS will be included, which necessitate extensive computations and ample resources,

while in constrained environments some features will not be realized, with the respective functionalities

being consumed as services offered by corresponding, trusted, feature-rich installations.

2.4 Application architecture

Figure 2.1 illustrates the conceptual view of the Trust Management Service. Its architecture is designed to

allow for exposing a coherent API, enabling any adaptation aspects to be implemented internally considering

all the appropriate contexts (network & resource availability, situation criticality etc.). Reception of

information needed to recompute the trust and risk scores - including device status, behaviour and

associated risk aspects - are mainly intercepted through asynchronous messaging, through a dedicated

communication channel, following the pub/sub paradigm. In this way, the TMS is decoupled from event

producers and their timings; however, content consumption via APIs can be also used. Reciprocally, the TMS

publishes events regarding notable changes of trust and risk levels, while also offering the same information

under REST APIs. Adaptation, where needed, will be supported by an adaptation component to be developed

and maintained separately from the computational aspects, promoting separation of concerns.

Figure 2.1. TMS high-level design

The overall high-level architecture of the TMS is depicted in Figure 2.1, while Figure 2.2 depicts the data view

of the TMS, indicating:

(a) the data maintained internally in the TMS database;

(b) the messages that the TMS subscribes to in order to obtain the necessary information to compute

trust and risk levels, as well as the sources of these messages, according to the overall Cyber-Trust

architecture;

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 16

(c) the information that the TMS receives directly from the users (typically, through a UI);

(d) the messages that the TMS makes available to the asynchronous communication infrastructure, for

the perusal of other Cyber-Trust components.

Trusted Peer TMS are curated directly by users. Users additionally provide information regarding other

trusted entities in the platform: this pertains to modules that generate asynchronous messages to the

information bus, and are expected to be consumed by the TMS. Each trusted entity specification provides

the data needed by the TMS to verify the authenticity and integrity of received messages, i.e. the name of

the peer and its certificate. While users are not commonly expected to be proficient with such data,

automated procedures upon the setup of the platform are expected to relieve the user of the task of

manually setting up this information. Should updates to this information be needed, automations,

configuration assistants and wizards may also ease the task of the users, similarly to the case of Bluetooth

device pairing, where the exchange of cryptographic data are masked beneath a simple PIN exchange [2].

Figure 2.2. TMS data view

2.5 Application programming interfaces

The TMS exposes the REST APIs listed in the following subsections for direct invocation by other Cyber-Trust

modules. As noted in subsection 2.4, and further elaborated in subsection 4.3, the TMS additionally employs

a loose coupling communication pattern, through the exchange of messages via the message bus; the

respective messages consumed through the message bus will be elaborated on in the context of WP8. The

REST API presented in this section refines and extends the initial API design presented in D5.3 [3], mainly the

incorporation of trusted entity management, which will facilitate the operation of the platform in a

production environment, facilitating the dynamic incorporation of additional component instances from

which the TMS may receive input.

2.5.1 REST APIs for managing device trust

Table 2.4 depicts the operations available for managing device trust, along with a brief description of each

one.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 17

Table 2.4. REST APIs for managing device trust

API URL specification Description

GET /trust /info /{deviceId} Returns the trust level for a device. The client may designate

the desired trust dimensions. The information whether the

reported trust level is explicit or implicit, is always returned.

PUT /trust/explicitLevel/{deviceId} Explicitly specify the trust level of the device.

DELETE /trust/explicitLevel/{deviceId} Delete the explicitly specified trust level of the device, returning

to automatic computation.

GET /trust Returns trust level for a set of devices. The client may designate

the desired trust dimensions. The information whether the

reported trust level is explicit or implicit, is always returned.

2.5.2 REST APIs for managing peer TMSs

Table 2.5 depicts the operations available for managing peer TMSs, along with a brief description of each

one.

Table 2.5. REST APIs for managing peer TMS instances

API URL specification Description

GET /peerTMS/{peerTMSId} Returns information for a registered peer TMS

DELETE /peerTMS/{peerTMSId} Deletes/unregisters a peer TMS.

PUT /peerTMS/{peerTMSId} Creates or modifies a peer TMS.

GET /peerTMS Returns information for a designated set of TMS.

GET /peerTMS/list/all Returns information for all registered TMS.

2.5.3 REST APIs related to risk management

Table 2.6 depicts the operations available for risk management, along with a brief description of each one.

Table 2.6 REST APIs related to risk management

API URL specification Description

GET /risks/prioritize Returns the top risks, prioritized. The number of risks to return

is described in the (optional) numRisks parameter. If missing, a

default number is inserted.

2.5.4 REST APIs related to trusted user management

Table 2.7 depicts the operations available for trusted user management, along with a brief description of

each one. Trust to users reflects on trust to the devices owned by them.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 18

Table 2.7. REST APIs related to trusted user management

API URL specification Description

GET /trustedUser/{trustedUserId} Returns information about the designated trusted user.

DELETE /trustedUser/{trustedUserId} Deletes/unregisters a trusted user.

PUT /trustedUser/{trustedUserId} Creates or modifies a trusted user.

GET /trustedUser Returns information for a designated set of trusted users.

GET /trustedUser/list/all Returns information for all registered trusted users.

2.5.5 REST APIs related to managing trusted entities

Table 2.8 depicts the operations available for adding trusted devices; these operations enable the

introduction of new trusted entities from which asynchronous messages can be received.

Table 2.8. REST APIs related to trusted user management

API URL specification Description

POST /trustedEntity/ Adds information about a new trusted entity, specifying the

name and the public certificate of the entity.

2.6 Technology stack

The technology stack and tools used for the implementation of the TMS are listed in Table 2.9. The technology

stack has only slightly been modified since D4.4 [4] and D5.3 [3], through the addition of the Hibernate

Object-Relational Mapping framework.

Table 2.9. Technology stack and applied tools used for the implementation of the TMS

Tool Description

Swagger Employed for prototyping the REST APIs of the TMS.

Java The TMS functionality is coded in Java.

Spring framework The Spring framework is employed to intercept and serve REST API requests.

MariaDB/MySQL DBMS for managing the TrustDB.

Hibernate For providing object-relational mapping, aligning the object-oriented view at

the application level with the relational view at the database level.

Javax.Persistence For managing database connections and persistent entities.

AMPQ/Asynchronous

message protocol

For realizing pub/sub-based communications.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 19

2.7 Physical architecture

In terms of physical architecture, the TMS is deployed as a single VM, running both the TMS and the data

store (MariaDB/MySQL).

Furthermore, the following deployment options exist, to best suit the particular characteristics of the

deployment platform/context:

1. run the TMS as one single Docker container, running both the TMS and the data store exists. Taking

into account that Docker containers are ephemeral, provisions should be made upon deployment to

map the filesystem of the Docker container that holds the data to stable storage.

2. run the TMS is deployed as one single Docker container, running both the TMS and the data store

exists. Again, provisions should be made upon deployment to map the filesystem of the Docker

container that holds the data to stable storage.

3. The TMS is deployed two interoperating Java application within a non-virtualized environment. This

option is expected to be used (a) in environments not supporting virtualization and (b) in restricted

environments where the overhead introduced by virtualization is not tolerable.

2.8 User Interface

The TMS runs as a service in Cyber-Trust platform and therefore it does not provide a dedicate own user

interface (UI). However, certain UI elements are included in Cyber-Trust platform (e.g. information about the

trust score of devices) to allow meaningful information to be provided to the user.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 20

3. State of the art review

In this section we review the state of the art in the domain of trust management for the implementation of

security, with a special focus on IoT environments. More specifically, we review both models and

architectures for trust management (subsection 3.2) as well as concrete implementations (subsection 3.3).

Models and architectures provide the generic context and mode of operation of trust management systems,

whereas TMS implementations are examined for possibility of existing code reuse. Before models,

architectures and implementations are presented, a brief overview of trust management concepts and

dimensions is given in subsection 3.1. Subsection 3.4 draws conclusions and reviews aspects considered in

the design and implementation of the TMS, taking into account the overall operation of the TMS in the Cyber-

Trust environment.

3.1 Trust management concepts and dimensions

The concept of Trust management has emerged as a solution to the issue of managing and controlling access

to information hosted in contexts where it is not feasible or desirable to use traditional authentication and

authorization methods to that effect. This is particularly true in the IoT domain, where the number of devices

render a case-by-case definition of access control specifications extremely laborious and practically

infeasible, whereas the dynamic nature of the device population and the device-to-device interactions do

necessitate an approach based on automated management, since human-mediated approaches would lead

to non-timely and/or inaccurate specifications.

Trust management is defined in [5] as an aid the automated verification of actions against security policies.

According to this definition, an action is allowed if the credentials presented are deemed sufficient, without

the need to state or verify the actual identity of the interacting party; in this respect, symbolic representation

of trust is separated from the actual person (or the person’s digital agent). Later research has replaced the
examination of credentials (which could be considered as pseudonymized identities, limiting hence the

benefits of introducing trust management [6]) to the examination of a set of properties, which can be proven

by an interacting party through the presentation of a set of digital certificates [7]–[9]. Under this scheme, the

original set of trust management system elements identified in [6] is modified as follows:

1. Trusted unconditionally.

2. Trust-related properties, which represent aspects of interacting parties that are relevant to the

application of security policies; typically, such properties are examined as antecedents of rules that

comprise a security policy. Trust-related policies are safeguarded through digital signatures or other

prominent means.

3. Trust relationships, which are a special kind security policy.

Note that the interaction between peers may involve multiple interacting parties, extending beyond the

paradigm of a service/information requestor submitting a request to a server and receiving a reply. Under

this view, a decentralized model is more prominent. In such a model, trust-related properties are generally

provided and testified for by third parties, in the same fashion that TTPs provide digital certificate validation

services. Furthermore, the computation of trust may be based on information collected from disparate

sources within the system; this information may include trust-related properties, trust relationships, policies

or trust assessments made by other peer systems. Notably, the sources of information bear themselves a

level of trust, which should be taken into account in the information gathering and exploitation process.

Similar to the concept of security, the concept of trust between entities is a composite notion involving

multiple aspects, including:

(a) the status of each entity, spanning across the entity’s health level (especially whether the firmware,
operating system kernel and critical configuration files are tampered with or integral; and whether

the software operating on the system contains vulnerabilities or not).

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 21

(b) any security controls that are in effect and may limit the exploitability level of vulnerabilities or the

impact that the exploitation of such vulnerabilities may have. Such security controls may be firewalls,

IDS/IPS, backup procedures etc. [10]

(c) the behavioural aspects of the entity, which includes (i) the inspection whether the entity has been

involved in malicious activities, (ii) the examination whether the entity complies with a prescribed

behaviour which is known to be benign and (iii) the inspection whether the entity exhibits “normal”
behaviour, i.e. behaviour that is known to be within the entity’s operation history, or is found to
exhibit exceptional behaviour.

Finally, contemporary attack methods entail complex multi-stage, multi-host attack paths, where each path

represents a chain of exploits used by an attacker to break into a network [11]. Attack graphs enable the

comprehensive risk analysis within a network, considering cause-consequence relationships between

different network states; furthermore, the likelihood that such relationships would be exploited can be also

taken into account [12].

The implementation of the Cyber-Trust TMS employs a trust- and risk-based approach to security, within

which trust establishment and risk assessment encompasses all the above listed aspects, providing thus a

comprehensive trust management and risk assessment view.

3.2 TMS models and architectures

Trust management models target at enabling nodes that participate in the trust management system to

determine a trust metric value for other nodes within the system. Approaches to how trust models approach

trust computation vary regarding numerous aspects, including the input used to compute trust, the way that

trust values are updated, the consensus sought for trust value computation, the scale at which trust is

measured, their resilience against attacks and so forth. Furthermore, trust management models vary with

respect to architectural paradigm they follow, i.e., the way that the components participating in the trust

management system are deployed in the target network, the relationships between the components and the

information flows.

In the following subsections we survey existing trust models and their architectures, commenting on their

merits and demerits.

3.2.1 Review of existing trust models

This section overviews the trust models that have been proposed by the literature trying to find an effective

and efficient trust computation method. In service-oriented networks, an IoT device acting as a service

requester needs a way of evaluating which of its peers can be trusted to provide it with the requested service,

while taking into consideration the energy demands of carrying out such evaluation. This is the challenge that

trust management models are aiming to solve. We present trust management models as seen in the

literature and we categorize each model by trust dimensions, resiliency against certain attacks and qualitative

characteristics.

3.2.1.1 Trust dimensions

Trust models are composed of several trust dimensions which can vary between them depending on the

approach followed. In this section we present the five most essential trust dimensions, namely, trust

composition, trust propagation, trust aggregation, trust update and trust formation [13].

Trust composition. Refers to the components the given model takes into consideration. The components

include Quality of Service (QoS) and Social trust.

• QoS trust refers to the evaluation of a node based on its capability to deliver the requested service.

It is considered as the “objective” evaluation of trust. In order to compute QoS trust, models use

various trust properties including competence, cooperativeness, reliability, task completion etc.

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 22

• Social trust refers to the social relationship between owners of IoT devices. Social trust is used in

systems where IoT devices must not be evaluated only on a QoS basis but also on a social basis, which

is the device’s commitment and willingness to cooperate. It can also be derived from similarity of
devices. Social trust properties include connectivity, honesty, unselfishness etc.

Trust propagation. Refers to the way trust values are disseminated between entities. In general, there are

two approaches, namely distributed and centralized.

• In distributed trust propagation, each device acts autonomously by storing trust values and

disseminating them as recommendations to other devices as needed.

• In centralized trust propagation a central entity exists, which is responsible for storing trust values of

the monitored network and disseminating them as needed.

Trust aggregation. Refers to the computation techniques used by a model to combine trust obtained from

direct observation with indirect trust coming from recommendations. Main aggregation techniques include

weighted sum, Dempster-Shafer theory, Bayesian inference, fuzzy logic and regression analysis.

• Weighted sum is a technique where weights are assigned on the participating values either statically

or dynamically. For example, one model could use a trust property, e.g., competence, in order to

assign higher or lower weights.

• Dempster-Shafer theory is based on belief function and plausible reasoning. It is a framework for

reasoning with uncertainty related to other frameworks like probability, possibility and imprecise

probability theories.

• Bayesian inference considers trust to be a random variable which follows a probability distribution.

It is a simple and statistically sound model.

• Fuzzy logic uses approximate reasoning meaning that it doesn’t use a binary evaluation variable but
rather a variable whose values range between 0 and 1 for example, or even linguistic limits like High

and Low which are translated using a membership function.

• Regression analysis is basically a prediction model which predicts the probability of an event

happening or not happening (binary). In trust computing it is used to estimate relationships between

environmental conditions, e.g., how much computing resources a node needs, which are treated as

variables and used to predict the trustworthiness of an object.

Trust update. Describes when trust values are updated. There are two approaches: event-driven and time-

driven.

• Event-driven is the approach in which trust values are updated when an event occurs.

• Time-driven is the approach in which trust values are update periodically.

Trust formation. Refers to how the overall trust is formed out of the trust properties considered. Trust can

be formed by considering only one trust property (Single-trust) or many properties (Multi-trust).

• Single-trust is when only one property is taken into consideration when computing trust and it is

usually a property of QoS. It is considered as a narrow approach because trust is multi-dimensional,

but it is useful in cases with limited resources.

• Multi-trust is the multi-dimensional approach in computing trust, because it uses more than one

trust properties to form the overall trust evaluation of a device.

We also used the following properties to classify the trust managements models: [14]

Trust scaling. Trust is represented by either discrete or continuous numerical values.

• Binary discrete values: Represented with 0 or 1, distrust or trust respectively.

• Multinomial discrete values: Sometimes binary values are not sufficient, so more scaled metrics are

used, e.g., “very trust”, “trust”, “distrust”, and “very distrust”.

• Continuous value: For example [0,1].

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 23

• Interval: Instead of using one value to represent trust, an interval is used in order to introduce the

uncertainty property of trust.

Semantic meaning. In different models and scenarios trust can have various semantic meanings. Some

semantic meanings include:

• Evidence- or experience-based trust: Trustors build their trust based on their own observations and

past interactions. This can be done using probabilities, mean average, mode average or difference.

• Application-specific behaviour-based trust: This means that trust is calculated based on specific

monitored behaviours.

• Similarity-based trust: This approach assumes that devices that are similar to each other, will

probably trust each other.

• Reputation: Reputation is a type of trust which isn’t relative to the trust between two specific devices

but instead each device has a trust value representing how much it is trusted by the whole

community.

• Fuzzy logic-based trust: Trust is considered to be nondeterministic and because of this, fuzzy logic is

suitable for evaluating it.

• Comprehensive trust: Many approaches take into consideration trust as seen in human relationships.

In this case, trust is seen as a sum of complex human interactions. On this basis, social metrics are

introduced in trust evaluation, like social similarity, social contact, friendship, etc.

Trust inference. In IoT networks, nodes are not always directly connected with another and in these cases

trust evaluation cannot be done by direct observation. Therefore, trust recommendations are introduced.

There are two operators to be considered for trust inference: transitivity and aggregation:

• Transitivity operator refers to the way the recommendations are combined by building a transitivity

“chain” to the trustee node and it is based on the transitive relation from mathematics.

• Aggregation operator refers to the way the recommendations are combined to calculate the overall

indirect trust.

Table 3.1. Overview of different trust models

Model Composition Propagation Aggregation Update Formation

QoS Social Distrib Central Weigh Fuzzy Bayes E/T Sin Mul

[15]–[18] X X X X E/T X

[19], [20] X X X X X E/T X

[21] X X X X T X

[22] X X X X T X

[23] X X X E X

[24] X X X T X

[25] X X X X X E X

[26] X X X E/T X

[27] X X X E/T X

[28] X X X T X

[29] X X X T X

[30] X X X X E X

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 24

[31] X X X X X E X

3.2.1.2 Trust-based attacks

Inside an IoT network, every node wants to have a high trust value. A high trust value means the node will

be selected more times over nodes with lower trust value, thus increasing their gains and influence over the

network. Malicious nodes will try a variety of attacks in order to gain more trust among their peers. There

are a lot of attacks that can be executed in an IoT network, such as, jamming attacks, replay attacks,

eavesdropping attacks, DoS attacks, etc. However, there are some attacks that are especially used to disrupt

trust and reputation systems. These attacks fit better into the scope of this work and the most common ones

are shortly presented below [31].

• Self-promotion attacks (SPA) [13]. The malicious node provides good recommendations for itself.

• Bad-mouthing attacks (BMA) [13]. A malicious node provides bad recommendations for a “good”
node in order to decrease its trust value and probability of being chosen as a service provider.

• Ballot-stuffing attacks (BSA) [13]. A malicious node boosts the trust of another malicious node in

order to increase the possibility of the malicious node being chosen as a service provider.

• Opportunistic service attacks (OSA) [13]. When the trust of a malicious node starts dropping, it starts

acting as a “good” node in order to regain its trust.

• On-off attacks (OOA) [13]. A malicious node is behaving randomly, sometimes performs well

sometimes bad, so that it won’t get labelled as malicious.

• Whitewashing attacks [14]. When a malicious node has very low trust, it discards its identity by

leaving the network and re-entering it.

• Discriminatory attacks [15]. A malicious node attacks non-friends or nodes without strong social ties.

• Sybil-Mobile attacks [18]. A malicious node creates one or more fake identities in order to

manipulate recommendations, promote itself and gain influence over the network.

• Selective Behaviour attacks [27]. A malicious node is behaving well and bad between different

services. For example, well for simple services, but bad for more complex ones.

Table 3.2. Overview of trust-based attacks

Attack

Resiliency

SPA BMA BSA OSA OOA White-

washing

Discrimi-

natory

Sybil-

Mobile

Selective

Behaviour

[16] X X X

[15] X X X X X

[17] X X X

[18] X X X X

[19] X X X X

[20] X X X X

[21] X

[22]

[23] X

[24]

[25] X X X X

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 25

[26]

[27] X X X X Χ

[28]

[29]

[30] X

[31]

3.2.1.3 Trust management models

In this section we survey the different trust models proposed in the literature. For each model, the approach

adopted for trust computation is presented, while salient features of the models are summarized in Table

3.3, within subsection 3.2.1.4 below.

Bao, 2012 [16]. This model considers Community of interest (Coif) based social IoT (SIoT) systems. Devices

have owners and owners have many devices. Each owner keeps a friends list. Nodes belonging to similar

communities are more likely to have similar interests or capabilities. Both QoS and Social trust composition

are considered, including three trust properties: honesty (QoS), cooperativeness (QoS) and community-

interest (Social); please refer to Table 3.3 for further details. The trust value is a real number in the range

[0,1] where 1 indicates complete trust, 0.5 ignorance, and 0 distrust. The trust values can occur from direct

observations and when such observations are not available, from recommendations. It follows a distributed

scheme, while for trust aggregation the weighted sum technique is used. It is worth mentioning that the

weights that were used for past experiences can be dynamically adjusted when new evidence occurs to

rebalance the trust convergence rate and trust fluctuation rate. In the simulation results, the effect that

changing weights have is observed, but a way to dynamically adjust them is not mentioned.

Chen, 2016a [15]. This model is very similar to Bao, 2012. Main differences include: 1. A general approach

for the computation of overall trust is not discussed. Instead, overall trust computation for specific scenarios

is discussed. 2. The friends (nodes) lists exchanged between nodes upon interaction are encrypted with a

one-way function in a way that nodes can identify only common friends. Hashing is cost-efficient. 3. The

model is tested in two real-world scenarios, namely, “Smart City Air Pollution Detection” and “Augmented
Map Travel Assistance”.

Bao, 2013 [19]. This model considers Community of interest (CoI) based social IoT (SIoT) systems. Devices

have owners and owners have many devices. Each owner keeps a friends list. Nodes belonging to similar

communities are more likely to have similar interests or capabilities. Both QoS and Social trust composition

are considered. The trust value is a real number in the range [0,1] where 1 indicates complete trust, 0.5

ignorance, and 0 distrust. The trust properties considered are honesty, cooperativeness and community-

interest; please refer to Table 3.3 for more details. The trust propagation is distributed. For trust aggregation,

Bayesian inference is used for direct trust and weighted sums are used to aggregate recommendations into

indirect trust. Most importantly, this model introduces an efficient storage management strategy suitable for

large-scale IoT systems.

Chen, 2016b [20]. This model is an extension of Bao, 2013 [19]. Extensions include: 1. In the evaluation of

recommenders, it introduces two additional properties, namely, friendship and social contact, which are

further analysed in Table 3.3. 2. In trust aggregation it combines the direct with the indirect trust to form the

overall trust. 3. Its simulations outperform Eigen Trust [32] and PeerTrust [33] in trust convergence, accuracy,

and attacks resiliency.

Chen, 2011 [21]. This model considers only QoS metrics for evaluating trust, namely, end-to-end packet

forwarding ratio (EPFR), energy consumption (EC), and package delivery ratio (PDR). Each node maintains a

data forwarding transaction table which includes the values: 1. Source: the trust and evaluation evaluating

nodes, 2. Destination: the evaluated destination nodes, 3. RFi,j: the times of successful transactions made

between nodes i and j, and 4. Fi,j: positive transactions. It follows a distributed scheme in terms of trust

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 26

propagation. In trust aggregation, a fuzzy trust model is used, and the overall trust is formed using a weighted

sum of direct and indirect trust based on recommendations. The direct trust is computed by first aggregating

the aforementioned QoS metrics, then labelling the results as a positive or negative experience based on a

threshold and then a fuzzy membership function computes the direct trust based on the number of positive

and negative experiences. Additionally, the model was tested on simulations and achieved better

performance from the Bio-inspired Trust and Reputation System for Wireless Sensor Network (BTRM-WSN)

[34] and the Distributed Reputation-based Beacon Trust System [35] in both packet delivery ratio and

detection probability of malicious nodes.

Mahala, 2013 [22]. This model considers three QoS metrics: Experience (EX), Knowledge (KN) and

Recommendation (RC) ratings. It follows a distributed scheme, as every device considers the ratings of its

neighbours for the calculation of the trust score. Trust is calculated periodically using Mamdani-type fuzzy

rules (representing If-Then relationships between their input variables) from the linguistic values of the three

aforementioned metrics. Trust scores (as linguistic values) are then mapped to a set of access control

permissions. Experience (EX) is the weighted sum of a number of previous interaction ratings between two

devices (+1 for a successful interaction and -1 for an unsuccessful interaction), Knowledge (KN) is the

weighted sum of direct and indirect knowledge ratings, and Recommendation (RC) is the weighted sum of

RC ratings from a number of devices about the device to be trusted. The three metrics are mapped to their

linguistic variables using predefined numeric (crisp) ranges. The model was tested in a simulated environment

of wireless sensors with communication between sensors being controlled by trust ratings, resulting in more

energy efficient communications, and proving to be scalable.

Prajapati, 2013 [28]. This model considers the service satisfaction at a given time from a specific service

provided by a node (a QoS property). Trust is defined as: the Direct Trust value, the Recommended Trust

value if the node calculating the trust value had no interaction with the rated service/node and thus the

Direct Trust value can’t be calculated, or as a predefined Ignorance Value if the rated node is joining the cloud

environment for the first time. Direct Trust is defined as the weighted sum of the rated service satisfaction

ratings over time (with the weights decreasing over time, thus favouring newer ratings). Recommended Trust

is defined as the weighted sum of the Direct Trust values of the other nodes. The weights assigned for each

Direct Trust value are calculated using the number of positive interactions between the node calculating the

trust value and the node whose rating is considered in the weight calculation, and the Satisfaction Level –a

factor dependent on availability, recovery time, connectivity and peak-load performance as defined in the

service agreement. All nodes maintain a Direct Trust Table and a Recommended Trust Table containing the

respective trust values with both tables being updated periodically. This model follows a distributed model

as in the case of Recommended Trust, the trust values of all network nodes are considered.

Saied, 2013 [27]. This model considers ratings given to a specific node and service at a given time while also

taking into consideration its state (e.g., age, resource capacity, etc.). It follows a centralized scheme with a

Trust Manager (TM) node receiving reports from the network and calculating the trust values on demand.

This leads to reduced communication overheads: a) since trust values are calculated and transmitted on

demand, less memory usage for each node; b) since the trust values can be requested again from TM, and

thus being energy efficient. The model operates in five phases: 1) TM receives reports from the network

nodes, 2) TM calculates the trust values of a number of candidate nodes and sends a list of trustworthy nodes

to the requesting node, 3) the requesting node receives the list and interacts with a chosen trustworthy node,

4) the requesting node rates the service provided by the chosen trustworthy node and sends the rating to

the TM, and finally 5) TM updates its trust values accordingly. Trust is calculated as the weighted average of

the scores given to a node while taking into consideration the reputation of the node providing the score,

the contextual similarity of all the reports concerning the same node, and the age of the report –favouring

the most recent reports. Contextual similarity is calculated from the node capabilities between two nodes –
to locate similar nodes, and/or from the difference of required resources between two services –to locate

nodes able to run a similar service. Initially all nodes of the network are deemed trustworthy.

Mendoza, 2015 [23]. This model is a distributed version of the model proposed by Saied et al. [27]. It is noted

that centralized schemes may not be suitable for IoT systems as server installation and server costs may be

prohibitive. The model considers ratings given to a specific node and service. The model operates in three

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 27

phases: 1) every node announces its presence to its neighbours while also keeping a record of its neighbours,

2) a node requests a service from a neighbouring node and rates the response as positive or negative, and 3)

the node calculates and stores the trust value of its neighbour. The response rating is defined as the fixed

value of the provided service weighted by an adjusting factor, with the negative response rating being equal

to two times the positive response rating. The provided service value is proportional to the processing

requirements of the service, as more processing power or energy is required to run a service the higher the

service value will be. The trust value of a node is calculated as the sum of all interaction ratings. The model

was tested against On-Off Attacks (OOA) and it is noted that a large number of neighbours can cause delays

in the assignment of the maximum distrust score to the malicious nodes.

Namal, 2015 [24]. This model considers four parameters: availability of resources to its users, reliability of

produced information, response time irregularities, and capacity. It follows a centralized scheme with a Trust

Manager (TM) module, hosted on the cloud, receiving filtered data from Trust Agents (TA) distributed on the

network which in turn receive raw data and monitor the state of the network nodes. The TM implements a

Monitor, Analyse, Plan, Execute, Knowledge (MAPE-K) feedback control loop and calculates the trust using

the weighted sum of the trust parameters for all parameters considered. The trust parameter is also a

weighted sum of the current value and the previous value calculated. This model shows advantages in:

availability and accessibility –as the TMS is hosted on the cloud and is accessible from the internet, scalability

–as the TMS utilizes TAs filtering the raw data, and flexibility –as the TAs can be deployed in a flexible manner.

Khan, 2017 [26]. This model considers ratings given to a node by its neighbours, these ratings are the

combination of three variables: belief, disbelief and uncertainty –as defined in Jøsang’s Subjective Logic. This
model is proposed as part of an extension of the RPL routing protocol [36], utilizing the proposed model to

isolate malicious nodes. It follows a centralized scheme with a central node (e.g., RPL border router or cluster-

head) calculating trust values for all network nodes and deciding to isolate malicious nodes. Each node of the

network is assumed to be able to detect and therefore rate the performance of its neighbouring nodes; each

of the three aforementioned variables is defined as follows: belief is the number of positive interactions

divided by the total number of interactions and a constant k, disbelief is defined similarly but instead of the

positive interactions the number of negative interactions is used, and uncertainty is also defined similarity

but with the constant k used instead of the number of positive/negative interactions. The central node

calculates the trust value of each network node by combination of the trust values regarding the node to be

trusted and using a threshold the central node isolates malicious nodes from the network.

Djedjig, 2017b [37]. This model considers two QoS parameters: selfishness and energy, and one social

parameter: honesty as ratings given about a node from its neighbours. This model is a proposed extension of

the RPL routing protocol, as in Khan et al. [21], to isolate malicious nodes. It follows a distributed scheme

with each node calculating the trust values of its one-hop neighbours while also considering the trust values

of its one-hop neighbours. Trust calculation is performed as follows: 1) each node calculates the direct trust

values of its one-hop neighbours as a weighted sum of the honesty, energy and unselfishness metrics

(definitions of which are not discussed in detail) with each metric being the weighted sum of the current

value of the metric and the previous value of the metric, 2) each node receives the direct trust values

calculated by its one-hop neighbours concerning the node to be rated, and 3) the indirect trust is then

calculated by each node as the average of the direct trust calculated by the node itself and its neighbours. All

nodes are assumed to be equipped with Trusted Platform Module (TPM) chips.

Medjek, 2017 [13]. This model is based on the one proposed by Djedjig et al. [37] with the difference in the

metrics considered: honesty, energy and mobility. The main difference is the network architecture as this

model applies to RPL networks consisting of a Backbone Router (BR) that federates multiple 6LoWPAN

networks, each consisting of a 6LoWPAN Border Router (6BR) connected to the BR and the rest of the

network nodes. This model follows a distributed scheme with each network node calculating the trust of its

one-hop neighbours, as in [37], with the added steps of notifying its 6BR if a node is found to be

untrustworthy and with the 6BR in turn notifying the BR of the malicious node. All nodes are assumed to be

equipped with a Trusted Platform Module (TPM) and all nodes are registered with the BR at installation time,

with every node having a unique ID assigned by the BR. Several lists are maintained by the various network

nodes; the BR maintains two lists: one of potential malicious nodes and one of all nodes and their states; the

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 28

6BR maintains three lists: one of all 6BR area nodes, one of all the mobile nodes, and one of the potential

malicious nodes; finally the remaining nodes also maintain three lists: one of potential malicious nodes, one

of suspicious nodes and a copy of the mobile node list from the 6BR. Three modules operate on the various

network nodes: IdentityMod controls access to the network and ensures that every node has a unique ID,

MobilityMod ensures that both the BR and the 6BRs are aware of mobile nodes and of their status, and

IDSMod is responsible for attack detection and mitigation. Trust is calculated in a similar fashion to [37] with

the values of the honesty metric supplied by the IDSMod and the values of the mobility metric supplied by

the MobilityMod; the three metrics are not discussed in detail.

Nitti, 2014 [25]. The two proposed models, subjective and objective, consider seven parameters: service

ratings, number of transactions per node –to detect nodes with an abnormal number of transactions, node

credibility, transaction factor –separating important transactions to avoid trust to be built solely by many

small transactions, computation capacity –as “smarter” nodes can be better suited to become malicious,
relationship factor –the type of relation between two nodes, and finally the notion of centrality –as a node

with many connections or involved in many transactions takes a central role in the network.

The subjective model follows a distributed scheme where each node stores the necessary information to

calculate the trust values locally. Two situations are covered relating to the social relationship between

nodes: when the rating node has a social relationship with the rated node and when the two nodes have no

direct social relationship. In the first situation trust depends: on the centrality of the rated node in relation

to the rating node –by count of the common friends out of all the neighbouring nodes, the direct experience

of the rating node –further defined as the weighted sum of both short-term and long-term opinions, and the

indirect experience of the rating node’s friends –defined as the weighted average of the trust values assigned

to the rated node by the rating node’s friends, weighted by their credibility. In the second situation, trust

depends: on the opinions of the chain of common friends connecting the two nodes, again weighted by their

credibility. Generally, after each transaction a rating (positive/negative) is given to the node providing the

service and to the nodes whose opinion was considered in calculating the trust value. Negative

recommendation ratings are given to both malicious nodes and to nodes in their neighbourhood, thus

isolating the malicious nodes and their influence further.

The objective model follows a more centralized scheme where each node reports its feedback to special

nodes, referred to as Pre-Trusted Objects (PTO), responsible solely for maintaining the distributed storage

system, in this case a Distributed Hash Table (DHT) and more specifically one following the Chord

architecture. Trust is calculated in a similar fashion as in the subjective model; node centrality is defined as

the total number of transactions performed by the node to provide a service divided by the total number of

transactions performed to either provide or request a service, and both short-term and long-term opinions

consider the ratings of every network node weighted by their credibility. Nodes with few social relations,

high computation capabilities and nodes involved in a large number of transactions between them are

assigned low credibility, as they are more likely to become malicious.

Wu, 2017 [29]. The system model consists of four entities with three trust relationships among them. The

four entities are defined: RFID tags, RFID readers, authentication centres and one administration centre, with

the first three being grouped in domains. A domain has multiple RFID readers connected with the domain

authentication centre which authorizes the readers to interact with the RFID tags, and the domain

authentication centres are connected with the administration centre. The trust relationships of this system

model are defined as: intra-domain trust –trust relationship between RFID tags and readers of the same

domain, inter-domain trust –trust relationship between authentication centres, and cross-domain trust –
trust relationship between RFID tags and readers belonging to different domains.

The trust management model consists of two layers: the authentication centre trust layer –a centralized trust

management system managing the trustworthiness of authentication centres, and the reader trust layer –
two proposed trust management schemes managing the trustworthiness of RFID readers. The RFID tags are

always assumed to be trusted.

The first reader trust management layer scheme proposed uses the Dempster-Shafer evidence theory and

consists of four steps: 1) the interaction of an RFID reader is recorded by its neighbours, 2) the neighbours

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 29

calculate the local trust values which are then transmitted to the authentication centre, 3) the authentication

centre calculates the global trust of the RFID reader by using the Dempster knowledge rule, and finally 4) it

the RFID reader is malicious or malfunctioning the administration centre is notified. Possible RFID reader

interaction events are identified and marked as: malicious behaviour, malfunctioning behaviour and normal

behaviour by the neighbouring RFID readers, each counting the number of events within a specified time

frame. Using the number of recorded events, the neighbouring RFID readers can calculate the local trust

value for each type of interaction events as: the number of events marked as

malicious/malfunctioning/normal divided by the total number of recorded events. The final value of the local

trust value is then chosen from the event-specific local trust values using a threshold. The authentication

centre calculates the global trust of the RFID reader by aggregating the event-specific local trust scores

calculated by the neighbouring RFID readers and then choosing the final integrated event-specific score using

a threshold.

The second reader trust management layer scheme proposed, considers the fact that events may not be

detected by neighbours of the RFID reader and thus the first reader trust management layer scheme may not

be applicable to certain situations. Each RFID tag keeps record of the last interaction with an RFID reader,

more specifically the RFID reader ID, a timestamp and the rating assigned to the RFID reader by the tag. This

record is sent at the next time the RFID tag interacts with any RFID reader (and is then deleted from the RFID

tag), with the RFID reader forwarding the record to its authentication centre which checks for abnormalities

and if any problem arises, it notifies the administration centre as well as the authentication centre the

previous RFID reader belongs.

The proposed authentication centre trust layer scheme considers abnormal event reports by RFID readers

and affects the trust value of the domain authentication centre the readers are part of. Calculation of trust

in this case can be performed by either of the two methods proposed for the reader trust management

schemes.

Mahmud, 2018 [31]. This model considers three social trust metrics for a pair of nodes, namely: relative

frequency of interaction, intimacy and honesty, and the deviations of generated data from the historical data

of the node that generated the trust metric and its neighbours. Two trust dimensions are defined: node

behavioural trust and data trust; both calculated by combination of direct (from the rating node) and indirect

(from the rating node’s neighbours) interactions, with indirect interactions being weighted by the distance

of the neighbour to the rated node. Node behavioural trust is calculated using an Adaptive Neuro-Fuzzy

Inference System (ANFIS), a fuzzy system using back propagation to tune itself. The three inputs to ANFIS are

defined as: relative frequency of interaction is defined as the ratio of interactions with the rating node out of

all interactions of the rated node in a given time period, intimacy is defined as the ratio of time amount spent

interacting with the rating node out of the total time spent interacting with all nodes except the rating node,

and honesty is defined as the ratio of successful interactions out of the total number of interactions of the

rated node with its rating node. Three linguistic terms are used in ANFIS for each of the three inputs: Low,

Medium and High. Deviations of generated data, used to calculate the data trust, are defined as follows:

direct data trust is defined as the deviation of instantaneous data from the historical data generated by the

rated node, and indirect data trust is defined as the deviation of instantaneous data from the historical data

from the historical data generated by the rated node’s neighbours.

Arabsorkhi, 2016 [38]. The work of Arabsorkhi et al. presents the general principle behind many proposed

trust management models considering ratings given to network nodes for the quality of the services provided

over a specific time period. If the rating node has enough information to determine the trust value from its

own ratings over the specified time period (by direct observation) it can proceed to calculate the trust value

of the node to be rated. If not, then the rating node can query the rest of the network and aggregate the

trust values assigned by the other network nodes to the rated node.

Yuan, 2018 [30]. This model considers ratings given after node interaction for the quality of provided services.

The network model consists of IoT edge nodes being part of a domain federated by an edge broker node,

which in turn contact a central cloud server responsible for the final calculation of trust values. Three trust

values are calculated: the direct trust about a device to another device (D2D direct trust), the feedback trust

 D5.4 Trust management service: security and privacy

Copyright Cyber-Trust Consortium. All rights reserved. 30

about a node by an edge broker (B-to-D feedback trust), and the overall trust (the final trust value) about a

device. D-to-D direct trust is updated and based on the history of direct interaction between nodes, it is

defined as the ratio of positive interactions and the number of total interactions between the two nodes. B-

to-D feedback trust is updated by the edge broker periodically and is based on all the D-to-D direct trust

values concerning an edge node (except self-ratings); the edge broker aggregates the D-to-D direct trust

values using weights derived by use of object information entropy theory, overcoming the limitations of

assigning the weights manually. The overall trust value is calculated as the weighted sum of the D-to-D direct

trust and the B-to-D feedback trust, thus considering the opinion of the rating node as well as the opinion of

the whole network about the rated node.

3.2.1.4 Qualitative characteristics

Table 3.3 summarizes the qualitative characteristics of the surveyed trust models. The following

characteristics are included in this summary:

• Inference: which mechanisms are employed for inferring trust values based on recommendations?

• Trust scaling: which is the range of the trust computation function?

• Advantages: which are the strong points of the model?

• Complexity: comments on space, time, processing, memory and communication complexity of the

model.

• Limitations: aspects that constrain the effectiveness or the applicability of the model.

• Monitored behaviour: which activities and evidence are collected to support the calculation of the

trust metric?

• Trust metric: lists the dimensions expressed within the trust metric, such as honesty, reputation etc.

• Context: refers to the environment for which the model has been developed for.

• Semantic meaning: lists how the approach to trust computation is interpreted at a high level of

abstraction. For instance, some could be experience-based or reputation-based, while some others

could be application-specific or application-agnostic. Note that multiple orthogonal dimensions can

be involved here.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 31

Table 3.3. Overview of qualitative trust characteristics

Model Inference Trust Scaling Advantages Complexity Limitations Monitored behaviour Trust metric Context Semantic

meaning

[16] Multiplication for

transitivity and

weighted sum of

trust values for

aggregation.

Continuous

[0,1].

Its trust-based service

composition outperforms

random service

composition and

approaches the maximum

achievable performance

from ground truth.

Node storage

needed to

keep trust

values.

Hostility is

considered to

be increasing

only over time

in the

simulations.

When ground

trust changes

dynamically,

recommendati

ons don’t
contribute to

convergence

speed.

Honesty: estimated by

keeping a count of

suspicious dishonest

experiences observed

over a time interval using

a set of anomaly detection

rules such as high

recommendation

discrepancy as well as

interval, retransmission,

repetition, and delay rules.

Cooperativeness trust: of

node i towards node j is

the ratio of the number of

common friends over the

number of node i's

friends.

Community-interest trust:

of node i towards node j is

the ratio of the number of

common

community/group

interests over the number

of node i's

community/group

interests.

Honesty,

Cooperativene

ss and

community-

interest.

Community of

interest (CoI)

based social IoT

(SIoT) systems.

Devices have

owners and

owners have

many devices.

Each owner

keeps a friends

list. Nodes

belonging to

similar

communities are

more likely to

have similar

interests or

capabilities.

Comprehensiv

e

[15] Multiplication for

transitivity and

Continuous

[0,1].

Its trust-based service

composition outperforms

Node storage

needed to

The storage

needs can be

Honesty: estimated by

keeping a count of

Honesty,

Cooperativene

Community of

interest (CoI)

Comprehensiv

e. Although a

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 32

weighted sum of

trust values for

aggregation.

random service

composition and

approaches the maximum

achievable performance

from ground truth.

keep trust

values. The

storage cost

per node is

O(NTNX), where

NT is the

number of IoT

devices and NX

is the number

of trust

properties.

excessive for

IoT devices

with limited

memory space.

suspicious dishonest

experiences observed

over a time interval using

a set of anomaly detection

rules such as high

recommendation

discrepancy as well as

interval, retransmission,

repetition, and delay rules.

Cooperativeness trust: of

node i towards node j is

the ratio of the number of

common friends over the

number of node i's

friends.

Community-interest trust:

of node i towards node j is

the ratio of the number of

common

community/group

interests over the number

of node i's

community/group

interests.

ss and

Community-

interest.

based social IoT

(SIoT) systems.

Devices have

owners and

owners have

many devices.

Each owner

keeps a friends

list. Nodes

belonging to

similar

communities are

more likely to

have similar

interests or

capabilities.

general

approach for

overall trust

formation is

not discussed.

[19] Multiplication for

transitivity and

weighted sum of

trust values for

aggregation.

Continuous

[0,1].

It introduces a storage

management strategy

suitable for large-scale IoT

systems.

Newly joining nodes can

build their trust very

quickly through available

recommendations.

The storage

management

strategy is very

efficient, “find
medium,

maximum and

minimum

operations

have a

Trust

recommendati

ons can be

biased when

the

recommender

is from a

different CoI.

Honesty: estimated by

keeping a count of

suspicious dishonest

experiences observed

over a time interval using

a set of anomaly detection

rules such as high

recommendation

discrepancy as well as

Honesty,

Cooperativene

ss, Community-

interest

Community of

interest (CoI)

based social IoT

(SIoT) systems.

Devices have

owners and

owners have

many devices.

Each owner

Comprehensiv

e.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 33

The simulations

considering the limited

storage method, where

storage management was

used, achieved similar

performance level with

the unlimited space

simulation and even

better trust convergence

time.

complexity of

O(1) by using

the max-min-

median heap

and all other

operations

(find, insert,

delete) can be

performed in

O(log(n)) time.

The case in

which a new

node joins

when the

systems hasn’t
converged yet

is not tested.

interval, retransmission,

repetition, and delay rules.

Cooperativeness trust: of

node i towards node j is

the ratio of the number of

common friends over the

number of node i's

friends.

Community-interest trust:

of node i towards node j is

the ratio of the number of

common

community/group

interests over the number

of node i's

community/group

interests.

keeps a friends

list. Nodes

belonging to

similar

communities are

more likely to

have similar

interests or

capabilities.

[20] Multiplication for

transitivity and

weighted sum of

trust values for

aggregation.

Continuous

[0,1].

It introduces a storage

management strategy

suitable for large-scale IoT

systems.

The weights for combining

social similarities are

adjusted dynamically and

this leads to credible trust

feedback and minimized

trust bias.

It outperforms EigenTrust

[32] and PeerTrust [33] in

trust convergence,

accuracy, attacks

resiliency.

The storage

management

strategy is very

efficient, “find
medium,

maximum and

minimum

operations

have a

complexity of

O(1) by using

the max-min-

median heap

and all other

operations

(find, insert,

Only persistent

attack patterns

considered, i.e.,

malicious

nodes perform

attacks with a

probability of 1

or whenever

there is a

chance.

The

determination

of the optimal

trust decay

parameter by

means of

User feedback (binary:

satisfied/not satisfied).

Friendship similarity: the

cosine similarity of the

two users’ friends lists.
Social contact similarity:

cosine similarity of the

two users’ locations lists.
Community of interest

similarity (CoI): cosine

similarity of the two users’
devices lists.

User

satisfaction

based on

service

completion,

Friendship,

Social- contact,

Community-

interest.

Service oriented

architecture

(SOA) based

social IoT (SIoT)

systems. Devices

have owners and

owners have

many devices.

Each owner

keeps a friends

list. Nodes

belonging to

similar

communities are

more likely to

have similar

Comprehensiv

e.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 34

Simulations considering

limited storage had same

performance as the ones

with unlimited storage.

delete) can be

performed in

O(log(n)) time.

convergence

and accuracy

trade-off based

on

environment

conditions is

left for future

work.

interests or

capabilities.

[21] Multiplication for

transitivity and

weighted sum of

trust values for

aggregation.

Continuous

[0,1].

Fast convergence.

The model reduces

energy consumption

caused by the presence of

malicious nodes.

Better performance from

BTRM-WSN [34] and

DRBTS [35] in both packet

delivery ratio and

detection probability of

malicious nodes.

- - End-to-end packet

forwarding (EPFR): the

ratio between the

numbers of packets

received by the

destination nodes to the

number of packets sent by

the source node.

Annual energy

consumption (AEC): the

nodes’ energy
consumption ratio.

Package delivery ratio

(PDR) calculated by packet

loss and packet

retransmissions.

End-to-end

packet

forwarding

(EPFR),

Energy

consumption

(AEC),

Package

delivery ratio

(PDR).

Wireless sensor

networks of IoT

and cyber-

physical systems

(CPS). Highly

dynamic

topology.

Fuzzy logic-

based trust.

[22] Multiplication for

transitivity and

fuzzy

membership

function mapped

Continuous

[-1,1] mapped

to three

linguistic values

“Low”,

The framework is scalable

in terms of number of

nodes and number of

trust linguistic terms,

- - Experience (EX) metric

calculation is based on

past interactions. When

interaction is successful it

has a value of +1 and a

Experience

(EX),

Knowledge

(KN),

A fuzzy trust-

based access

control (FTBAC)

framework for

IoT is discussed.

Fuzzy logic-

based trust.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 35

to three linguistic

values which are

in turn used to

create rules that

form overall trust

“Average” and
“Good”

without affecting

performance.

The simulations show that

energy consumption is

less in access control with

FTBAC than without.

Furthermore, residual

energy is higher in access

control with FTBAC than

without.

value of –1 otherwise. The

final value is relative to

past interactions values

sum.

Knowledge (KN) is

calculated based on

“direct and indirect
knowledge” but the
monitored behaviour to

obtain these values is not

discussed.

Recommendation (RC)

metric is calculated with

the use of RC values from

other devices for the

trustee.

Recommendati

on (RC)

It focuses on

permissions that

are assigned to a

device based on

the service

provider’s trust
towards this

device.

[28] Multiplication for

transitivity with

no aggregation

between direct

and indirect

trust.

Continuous

[0,1].

- - - Service satisfaction for

direct trust is not

discussed in detail. For

recommended trust a

satisfaction level is defined

which depends on

availability, processing

capacity, recovery time.

Connectivity and peak-

load performance.

Service

satisfaction.

This trust model

is defined in the

context of

Software as a

Service (SaaS) in

cloud

environments. It

is perceived, that

a consumer will

ensure the

trustworthiness

of the relevant

service providers

before accessing

a service.

Evidence,

experience and

reputation-

based trust.

[27] Multiplication for

transitivity and

Continuous

[-1,1].

Its context-aware multi-

service approach

- - Service satisfaction: the

service for which the node

Service

satisfaction

A trust

management

Evidence,

experience,

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 36

weighted

average for

aggregation but

with centralised

propagation

(only

recommendatio

ns are used).

introduces a high level of

sophistication in trust

management.

was evaluated, the

resources-based capability

of the node at the time of

the service request, the

time at which the service

was requested. How the

service satisfaction is

evaluated depends on the

service.

(negative/positi

ve).

system for the

IoT which takes

into

consideration

that an IoT

network can

contain different

kinds of devices

providing

different kinds of

services. On this

basis it proposes

a context-aware

and multi-service

approach.

application-

specific and

similarity-

based trust.

[23] Only direct trust. Continuous

[-1,1].

A multi-service approach

is followed.

- The model

convergence

time is relative

to the number

of nodes and

simulations

show it doesn’t
scale well.

Service satisfaction is

relative to the service for

which the node was

evaluated. Services are

valued based on their

processing and energy

requirements. More

demanding services have

a higher weight value.

Service

satisfaction

(negative/positi

ve). The

positive/negati

ve follows an

award/punish

ment logic of

the trustor is

weighted

based on the

above.

A trust

management

system for the

IoT which takes

into

consideration

that an IoT

network can

contain different

kinds of devices

providing

different kinds of

services. On this

basis it proposes

a multi-service

approach.

Evidence,

experience,

and application

specific based

trust.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 37

[24] No

recommendatio

ns. Calculations

are done on the

central TMS

which receives

raw data from

sensors.

Continuous

[-1,1].

The MAPE-K control

feedback loop improves

trust level consistence

over time in a highly

dynamic environment as

opposed to the

simulations run without

feedback.

- - The IoT sensors send raw

data that they collect, and

the representation of the

data differs based in the

trust metric they are

referring to. Examples

include: A sensor that

senses availability would

send the number of

successful ping requests. A

sensor that senses

reliability would send the

Bit Error Rate (BER) of the

target environment.

Response time could be

evaluated based on the

round-trip time and

capacity based on the

current sessions of a

device and maximum

number of connections to

a device.

Availability:

availability of

resources,

Reliability: a

reliable system

always

produces

correct

information,

Response time:

irregularities in

response time

can mean a

device is

compromised,

Capacity:

accessibility

and scalability

This model

proposes a

framework for

integrating cloud

and IoT in order

to develop a

cloud-based

autonomic TMS

which evaluates

the level of trust

in an IoT cloud

ecosystem.

Evidence and

experience-

based trust.

[26] Multiplication for

transitivity and

weighted mean

of evidence for

aggregation

Continuous

[0,1].

He achieves better

performance than both

resilient-RPL (rRPL) and

classical-RPL (cRPL) in

various tests. When the

network size increases the

number of bad paths is

reduced as opposed to

the other

implementations where it

increases.

- A small false

positive rate is

associated with

bad nodes

detection.

Nodes monitor the activity

of their neighbours. So, a

node x sends a packet to a

node y to be forwarded. If

the y forwards the packet

correctly and timely, x

increases the value of

positive experiences,

otherwise the value of

negative experiences.

Trust metrics

are belief,

disbelief and

uncertainty.

They are

relevant to the

number of

positive and

negative

experiences.

This model

proposes a trust-

based extension

of the RPL

routing protocol.

Evidence and

experience-

based trust.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 38

In the simulation where

the number of bad nodes

varied the proposed trust

RPL (tRPL) has less bad

paths than the other two.

 Better packet delivery

ratio.

tRPL can detect 80% of

bad nodes successfully.

[37] Indirect trust is

not weighted,

and aggregation

is done through

average of direct

and indirect sum.

Continuous

[0,1].

Simulations show that it

avoids malicious paths

better than classical RPL.

- This model

uses additional

hardware

embedded in

every device

for security

computations

and processing.

For the ERNT metric

computations nodes

monitor their neighbours

for selfishness, energy,

and honesty.

Extended RPL

Node

Trustworthines

s (ERNT)

This model

proposes an

alternative

scheme for the

RPL protocol.

Comprehensiv

e.

[13] Indirect trust is

not discussed.

Continuous

[0,1].

It achieves high levels

of security.

The use of T-

IDS is

resource-

demanding in

both storage

and

communicati

on overhead.

This model

uses

additional

hardware

embedded in

every device

for security

computations

and

processing.

For the ERNT metric

nodes are monitored

for honesty, energy

and mobility.

Extended RPL

Node

Trustworthin

ess (ERNT)

This model

considers the

work of [37]

and extends it

by proposing a

trust-based IDS

(T-IDS).

Comprehensi

ve.

[25] Subjective:

Multiplication

for transitivity

and weighted

Continuous

[0,1].

In the simulations with

Class 1 malicious

objects, both

Subjective and

Objective models

- - Subjective:

Feedback: each node

evaluates the service

received with a value in

[0,1].

Subjective/O

bjective:

Feedback,

Total number

of

Trustworthines

s for the social

IoT. Two

separate

models are

Comprehensi

ve.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 39

sum for

aggregation.

Objective: The

computation is

done by a

dedicated node

based on

feedback by

the other

nodes and

nodes retrieve

trust values

from it. The

feedbacks are

weighted

based on the

credibility and

transaction

factor metrics.

outperform TVM/DTC

[34] and TidalTrust [39]

models.

Total number of

transactions between

two nodes.

Credibility: the

credibility of the

recommender is based

on the direct trust of

the recommendation

receiver towards the

recommender and the

centrality of the

recommender.

Transaction factor: the

relevance of a

transaction considered

between two nodes to

discriminate relevant

from irrelevant ones.

Relationship factor:

based on the nature of

the relationship

between two nodes

different values are

assigned. The

relationships include

but are not limited to

ownership object

relationship and co-

location object

relationship.

Notion of centrality is

based on the sequence

transactions,

Credibility,

Transaction

factor,

Relationship

factor, Notion

of centrality,

Computation

capability.

proposed,

namely,

Subjective and

Objective

Trustworthines

s.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 40

of social links that form

the path between the

two nodes.

Computation

capability: Objects with

greater computation

capabilities are

considered as more

capable of malicious

activities. Objects are

divided in two classes.

Class 1 includes objects

with great

computational

capabilities, such as

smartphones. Class 2

includes objects with

only sensing

capabilities, such as a

sensor.

Objective:

Feedback: same as in

Subjective.

Total number of

transactions: same as

in Subjective.

Credibility: depends on

relationship factor,

computation

capabilities and total

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 41

number of

transactions.

Transaction factor:

same as in Subjective.

Relationship factor:

same as in Subjective.

Notion of centrality: is

based on the number

of times the node

requested a service,

the number of times it

acted as an

intermediate node in a

transaction, and how

many times is has

provided a service.

Computation

capability: same as in

Subjective.

[29] Dempster-

shafer: based

on an

algorithm.

Verification of

interaction

proof (VIP):

based on a

ratio of the

positive/negati

ve interactions

a reader had.

Dempster-

Shafer:

{Trusted,

Malfunctioni

ng, Malicious}

Verification

of interaction

proof:

Continuous

[0,1].

Fast trust convergence.

Able to support large

scale RFID applications.

Both Dempster-Shafer

and VIP outperform the

Bayes-based scheme in

convergence speed,

malicious event

detection rate.

- - Behaviour: Discarding

data, tampering with

data, Replaying or

forging data.

Positive interactions:

RFID tag rates a reader

with 0 for negative and

1 for positive.

Dempster-

Shafer:

Behaviour.

Verification

of interaction

proof (VIP):

Ratio of

positive

interactions.

This model

proposes a

trust

management

system for

multi-domain

RFID systems.

The RFID

system model

consists of one

or more

domains and

each domain

Evidence,

experience

and

reputation

based.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 42

includes RFID

tags, RFID

readers,

authentication

centres and an

administration

centre. A

centralized

trust

propagation

approach is

followed.

[31] Adaptive

neuro-fuzzy

inference.

Not clarified.

(pg. 8-9)

The proposed model

TMM outperformed

TRM [21] in both

packet forwarding ratio

and energy efficiency.

It also outperformed

AODV (Ad hoc On-

Demand Distance

Vector) [40] and

trusted-AODV in

throughput.

TMM has higher

accuracy and f-

measure than a model

using a fuzzy inference

system instead of the

adaptive neuro-fuzzy

inference system.

- - Behavioural trust:

Relative frequency

interaction: relative to

the number of

interactions between

the nodes and the total

number of interactions

with other nodes over

the same period of

time.

Intimacy: relative to

the time of interaction

between two nodes

and the cumulative

time of interactions

with other nodes.

Honesty: based on the

numbers of successful

and unsuccessful

interactions.

Behavioural

trust: Relative

frequency

interaction,

Intimacy,

Honesty.

Data trust:

Direct,

Indirect.

This model

proposes a

Neuro-Fuzzy

based Brain-

inspired trust

management

model for

cloud based

IoT

architectures

security and

data reliability.

Comprehensi

ve.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 43

Data trust: deviation of

node’s current data
from the historical data

of the node. In both

direct and indirect

evaluations.

[30] Recommendati

ons are

computed and

provided in a

centralized

manner.

Objective

information

entropy theory

is used for

transitivity.

Weighted sum

for

aggregation.

Continuous

[0,1].

It achieves better

global convergence

time and task failure

ratio than PSM and

Distributed Reputation

Management (DRM)

[41].

It’s lightweight in terms
of complexity.

Space

complexity

(communicati

on

overhead):

3*m*n*δ, m:
number of

clusters, n:

size of

clusters, δ:
the maximum

number of

trust

computing

for a given Δt.

Time

complexity:

the total time

complexity of

overall trust

evaluation is

O(n2).

- After each transaction,

each participating node

evaluates the other

node based on service

completion and sends

the value to the broker.

Service

satisfaction.

This model

proposes a

trust

computing

mechanism

specifically

designed for

IoT edge

computing.

Evidence,

experience

and

reputation-

based trust.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 44

3.2.2 Trust management architectures

In section 3.2.1 we have reviewed the existing trust management systems and their features. In this section,

we survey the relevant trust management architectures, which dictate how the TMS components are

deployed in the target network, the relationships between the components and the information flows. A

trust management system involves a number of different components that are involved in the various

activities taking place within the system; taking into account the aspects of trust models identified in section

3.2.1, we can identify the following types of components:

1. Data collection components. These components collect the necessary data for performing trust

assessment, which range from consumer satisfaction, QoS aspects, suspicious/dishonest behaviour

and so forth.

2. Data storage components. These components store the data collected by data collection

components and make them available for trust calculations.

3. Trust calculation components, which extract the data from data storage components and calculate

trust. In this process, they may query other trust calculation components regarding their trust

assessments and use the replies in their computation.

4. Trust consumers, which query trust calculation components regarding trust assessments and use the

obtained values for implementing security policies.

While data collection and storage components as well as trust consumers are typically dispersed across the

network, trust calculation components are laid out according to different paradigms, and these layouts

characterize the trust management system architecture. Overall, the following categories are identified for

trust management architectures: (a) centralized, (b) hierarchical, (c) distributed/Peer to peer. In the following

subsections we elaborate on each of the categories, presenting its features and prominent application cases.

Figure 3.1. A centralized trust management system architecture

3.2.2.1 Centralized

The centralized architecture paradigm involves a unique trust management authority, which collects all the

information necessary for trust calculation and computes the trust score for entities. Then, interested parties

can query the trust score of entities, subject to suitable authorization.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 45

Centralized systems are known to have scalability and reliability issues, hence only few systems have been

reported in the literature to follow this paradigm. Figure 3.1 presents a reference centralized TMS

architecture from [42]. In this architecture, a single trust calculator collects all the metrics related to trust

computation and computes the trust metric for entities. Both service providers and consumers are assigned

a trust score (credibility): the trust score assigned to service consumers moderates the weight of the trust

metrics they contribute to the system.

3.2.2.2 Hierarchical

The hierarchical architecture paradigm identifies clusters of nodes, where each cluster elects a coordinator.

Nodes within a cluster liaise with the coordinator, exchanging observations, metrics and trust values; the

coordinator is responsible for synthesizing the trust assessments of the nodes within the cluster it

coordinates into a comprehensive trust score and for communicating with other coordinators to exchange

trust values. Hierarchical architectures are well-suited for IoT infrastructures, where nodes with limited

resources are placed under the coordination of the corresponding gateway node, which is more resource-

rich and can host resource-intensive operations. Respectively, trust assessments are generally performed

having available more detailed local data (measurements and observations obtained and collected at cluster

level) whereas inter-cluster communications are limited to the exchange of either trust assessments or data

summaries, rather than detailed data.

Nodes in hierarchical systems may be organized across multiple levels of hierarchy. In this line, [43] describes

an architecture where nodes are clustered into autonomic nodes, and autonomic node contains multiple

autonomic Decision Entities (DEs). In turn, A DE is introduced in the Generic Autonomic Network Architecture

(GANA) designed to follow hierarchical, sibling and peering relationships with other DEs within a node or

network. It collects information from peering DEs or sibling DEs, makes decisions and manages Managed

Entities (MEs) at a lower level i.e., the level of abstracted networking functions. DE is the element that drives

the control-loop over the MEs and implements the self-* functionalities e.g., self-configuration, self-

monitoring, self-healing.

Figure 3.2. Internal structure of a cluster [44]

Figure 3.2 presents the internal structure of a cluster, as per the design reported in [44], whereas Figure 3.3

depicts the organization of multiple clusters into a hierarchical trust management system [43]. Karame et al.

[45] is also an example of a hierarchical architecture, applied in peer-to-peer nodes having super-peers.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 46

Figure 3.3. Integration of multiple clusters into a hierarchical trust management system [43]

3.2.2.3 Distributed/Peer to peer

In this architectural paradigm trust management components are dispersed across the network and operate

autonomously. Each node makes its own observations and measurements and maintains them into a local

database. Nodes may also request from other peer nodes either detailed measurements and observations

or synopses of measurements of measurements and observations, or trust assessments; then, they compute

a trust score for other entities, synthesizing their own data and the data they have received.

Figure 3.4. Components within a peer node participating in a TMS [46]

Figure 3.4 illustrates the components within a peer node participating in a TMS. The node itself responds to

requests from other nodes for trust assessments (and provisionally other data), while it can become itself a

client to other nodes, requesting trust assessments (and provisionally other data).

The distributed/peer to peer paradigm is the most widely used in the literature: [46]–[50] are typical cases

where this paradigm is used.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 47

3.3 Trust Management System Implementations

In the previous subsections, we have surveyed of trust management methods, protocols, algorithms and

architectures; in this section, we examine trust management implementations, focusing on the open source

implementations, which could be used as a basis for the implementation of the Cyber-Trust TMS. To this end,

we have performed extensive searches in the major open source repositories, namely GitHub1 and

SourceForge2. For each of the trust management systems located, we performed an initial assessment,

dropping those repositories that were incomplete or not adequately populated (i.e., contained only a few

files or only documentation with no concrete implementations). Subsequently for the remaining

implementations, we considered the following aspects:

1. Domain of use. The intended domain of use for the software was assessed, examining whether the

system was oriented to the computer security trust domain or other trust domains with different

concepts and requirements; in particular, many systems were oriented towards financial trust, not

being thus suitable for use within the Cyber-Trust project.

2. Functionality. The functionality offered by the system was analysed, considering whether REST/web

service/remotely invokable APIs are offered, the existence of UIs and in particular web-based UIs and

the algorithms implemented.

3. Extensibility, modifiability, active support and documentation. These properties are required for

adaptation of a system to the needs to Cyber-Trust to be accommodated. Extensibility and

modifiability are contextualized for the Cyber-Trust project, considering the expertise of the

consortium in the implementation language and environment.

4. Deployability to Cyber-Trust target platforms. The Cyber-Trust system specifications dictate that TMS

instances will be running on data centres, smart gateways and smartphones; each deployment target

has its own runtime environments and resource capabilities and TMS implementations should be

able to run efficiently on top of all these deployment targets.

In the following paragraphs, we present the open source TMS implementations surveyed. Systems designed

for use in other domains, and therefore not being useful for the context of Cyber-Trust are briefly described

in subsection 3.3.8.

3.3.1 Soutei

Soutei (https://sourceforge.net/projects/soutei/) is a trust-management system for access control in

distributed systems. Soutei policies and credentials are written in a declarative logic-based language. Soutei

policies are modular, concise, readable, supporting conditional delegation. Policies in Soutei support

verification, and, despite the simplicity of the language, express role- and attribute-based access control lists,

and conditional delegation. They support policy verification, and, despite the simplicity of the language,

express role- and attribute-based access control lists, and conditional delegation.

Soutei provides a number of interesting concepts, and may model, among others, role-based access control,

capabilities, policies predicated on time and lists, trees, organizational charts & partial orders. It provides a

TCP server hence functionalities can be remotely invokable. Its documentation however is limited, hindering

installation, configuration and maintainability. The Cyber-Trust consortium does not have adequate

experience with the Haskell language, hence the extension and maintenance of the software will be further

hindered. The provided implementation is almost 10 years old and in many aspects it is incompatible with

the recent developments of the Haskell language; Soutei does not compile and run successfully under the

recent versions of the Haskell compiler; it has been found to compile successfully under version 6.8.3 of the

Haskell compiler, which is severely outdated and may contain functionality or security issues. Finally, running

Haskell on Android devices, which is a significant target for the Cyber-Trust project, has only been reported

1 https://github.com/

2 https://sourceforge.net/

https://sourceforge.net/projects/soutei/
https://github.com/
https://sourceforge.net/

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 48

in 2018, and requires the use of low-level techniques, such as Java Native Interface (JNI) or the Native

Development Kit (NDK) [51] which introduces an additional set of required programming skills and another

level of mapping which increases the probability of errors. The requirement to use version 6.8.3 of the Haskell

compiler will probably introduce additional compatibility issues with the Android platform.

Considering the above, Soutei is not a prospective candidate for use in the Cyber-Trust project.

3.3.2 Trust guard

Trust Guard (https://github.com/blatyo/trust_gaurd) is an implementation of an algorithm for countering

vulnerabilities in reputation management for decentralized overlay networks, introduced in [52]. This

implementation dates back 9 years and is reported by the author as “untested”. It includes some code on
how trust values are computed/updated according to newly arriving information and old estimates decay

with time in favour of new information. The implementations are simple and can be directly derived from

the reference paper [52]. No server is provided, hence no remote invocation is possible; only running through

the command-line is supported. Obviously, the implementations can be wrapped within web service

containers, however considering the simple nature of the implementations and the fact that the project is

untested, the benefits from using the Trust Guard are minimal and additionally introduce the need for testing

and binding to the Ruby platform.

Considering the above, Trust Guard is not a prospective candidate for use in the Cyber-Trust project.

3.3.3 pyKeynote/keynote library

pyKeynote (https://github.com/argp/pykeynote) is a Python extension module for the KeyNote trust

management system [5]. It provides a high-level object-oriented interface to the KeyNote trust management

API. The implementation is very outdated, with its last update dating back 12 years, and it relies on the

keynote library (http://www1.cs.columbia.edu/~angelos/keynote.html) which dates back at an even older

timepoint (2000). Some concepts of the keynote library –which is written in C-, including assertions and

grants could be usable. The C library accommodates provisions for local invocations, it could however be

wrapped under remotely invokable containers. Porting though to the TMS implementation language (Java)

would necessitate much effort, since supporting libraries are not directly available in Java.

Considering the above, the Keynote library is not a prospective candidate for use in the Cyber-Trust project.

3.3.4 SAFE

SAFE (https://github.com/wowmsi/safe) is an integrated system for managing trust using a logic-based

declarative language. Logical trust systems authorize each request by constructing a proof from a context---

a set of authenticated logic statements representing credentials and policies issued by various principals in a

networked system. Two informal publications ([53] and [54]) describe the theoretical and practical basis of

the system. SAFE aims to address the problem of managing proof contexts: identifying, validating, and

assembling the credentials and policies that are relevant to each trust decision. The approach of SAFE to

managing proof contexts is using context linking and caching. Credentials and policies are stored as certified

logic sets named by secure identifiers in a shared key-value store. SAFE offers language constructs to build

and modify logic sets, link sets to form unions, pass them by reference, and add them to proof contexts. SAFE

fetches and validates credential sets on demand and caches them in the authorizer. We evaluate and discuss

our experience using SAFE to build secure services based on case studies drawn from practice: a secure name

service resolver, a secure proxy shim for a key value store, and an authorization module for a networked

infrastructure-as-a-service system with a federated trust structure [53], [54].

The SAFE implementation is distributed under the Apache 2.0 license, which is permissive, so it can be reused,

either as a whole or at the level of selected portions. Scala implementations can be run on Android

(https://scala-android.org/) with a small footprint, however more extensive tests should be made to

determine the footprint of the particular implementation.

https://github.com/blatyo/trust_gaurd
https://github.com/argp/pykeynote
http://www1.cs.columbia.edu/~angelos/keynote.html
https://github.com/wowmsi/safe
https://scala-android.org/

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 49

The code implementing SAFE has some high-level documentation regarding the architecture, however the

documentation on compiling and running the code is lacking. No executable commands or relevant sources

are present in the default distribution, hence execution procedures cannot be determined. The code

implementing the SAFE TMS lacks comments, therefore code modifiability and extensibility is low. Porting

though to the TMS implementation language (Java) would necessitate much effort, since supporting libraries

are not directly available in Java.

Considering the above, SAFE TMS is not a prospective candidate for use in the Cyber-Trust project.

3.3.5 TMLib

The tmlib system (https://github.com/pchapin/tmlib) is a library of functions that allow applications to

support trust management style distributed authorization. The TMlib library is reported to provide an

administrative application that can be used to create and manually verify certificates in multiple certificate

formats. In addition, this library provides functions for performing a proof of compliance computation that

can be used in any application that wishes to use trust management services.

TMLib assumes that the participating nodes specify local policies and encrypts the communication between

nodes. Node identity is proved by means of certificates. Fundamentally TMLib is a library of functions that

can be called by an application that is interested in trust management services. However, there are a number

of administrative tasks that any node must support in order for the system to be usable. Accordingly, TMLib

comes with an administrative application that allows its user to perform certificate creation, managing of

public key and policy databases, as well as executing test queries and setting policy dissemination rules.

TMLib has an undocumented dependency on an ACO project (presumably ant colony optimization) written

in ADA; however, no such open-source project or relevant files could be located. Hence. It was not possible

to compile and test the project. Furthermore, consortium expertise with ADA is very limited, hindering thus

modifiability and extensibility.

Considering additionally the lack of documentation, TMLib is not a prospective candidate for basing the

Cyber-Trust TMS implementation.

3.3.6 Cloud trust protocol daemon

The Cloud Trust Protocol Daemon (CPTD - https://github.com/CloudSecurityAlliancePublic/ctpd) is a

prototype server implementing the Cloud Security Alliance's Cloud Trust Protocol. The Cloud Trust Protocol

(CTP) is designed to be a mechanism by which cloud service customers can ask for and receive information

related to the security of the services they use in the cloud, promoting transparency and trust. This prototype

called ctpd is a Unix-style server written in Go with mongodb as a database backend. It has been tested on

Ubuntu/Debian Linux and Mac OS X. The code of ctpd is reported to be still in 'beta' stage and is mainly

intended for testing and research purposes.

ctpd aims to fully implement the CTP data model and API [55], [56] as well as the non-official CTP 'back office'

API [57]. This API includes provisions for managing the concepts of:

• service views: represents a service offered to a specific customer under the responsibility of a single

provider. This service is usually described in an SLA or service interface. A service-view encompasses

a set of assets.

• Assets: used to represent any tangible or intangible element of a cloud information system, such as

for example simple API URLs, storage, processor cores or compute instances, databases, full blown

platforms, etc. A set of attributes is attached to an asset.

• Attributes: used to represent characteristic of an asset that can be evaluated quantitatively or

qualitatively and is identified with a distinct name (e.g., “availability”, “incident response”, etc.).
Associating a value with a security attribute requires the specification of a measurement.

https://github.com/pchapin/tmlib
https://github.com/CloudSecurityAlliancePublic/ctpd

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 50

• Metrics: a standard of measurement, which will be referenced in measurements. A metric is typically

specified in an external document that describes in human readable form the conditions and the

rules for performing the measurement and for understanding the results of a measurement.

• Measurement, which describes how a specific attribute is evaluated, using a specific metric.

• Triggers, which enable cloud service customers to receive notifications when specific conditions are

met. A trigger is a conditional expression on the measured value of a security attribute.

• Log entries, which are generated by triggers.

• Dependencies, which are used to describe relationships between different cloud services that are

associated together to form a cloud supply chain.

Notably, the Cloud Trust Protocol Daemon does not compute any trust or risk metric: its purpose is to manage

the concepts listed above, which can be used (among others) in the formulation of trust scores, the delivery

of notifications (through triggers) and the creation of persistent log entries. However, it should be noted that

triggers are not fully implemented (trigger deletion is lacking), and XMPP-based notifications (through which

notifications raised by triggers are delivered) are not implemented at all (c.f. [56]).

Under this view, the utility of CPTD for the implementation of the Cyber-Trust TMS is limited, and will not

be further considered towards this direction.

3.3.7 Retrust

Retrust (https://github.com/liamzebedee/retrust) is a work-in-progress protocol for decentralized

reputation/trust, based on Evidence-Based Subjective Logic (EBSL) [58]. The model is based on capturing

interactions between nodes in the form (source, target, value), with value being > 0 for trusted interactions

and < 0 for negative interactions. In this model, trusted friends/seeds need not be specified or explicitly

maintained, since this information is automatically derived from interactions. An application-agnostic mode

is also considered, in which reputation is a subjective-logic opinion of (belief, disbelief, uncertainty) that can

model any quality of reliability in interaction. Naturally, the implementation should provide implementations

of the methods computing the reputation of entities: the reputation for an entity is perspective-specific, i.e.

a single entity may be assigned multiple reputation scores, depending on the perspective under which it is

evaluated. The perspective may be a self-view, the individual view of another entity or the view of a group

of other entities (e.g. all entities belonging to a specific entity category such as servers within the

demilitarized zone, or entities bound together with any arbitrary criterion).

The implementation is command-line based, therefore it is oriented towards single runs that retrieve

interactions/evidence for entities, compute the results and display them and/or generate graphical

representations for them. This means that substantial development effort should be put into modifying the

code so as to provide server-type operation, i.e. modify the code to run as a background service and render

it capable to responding to REST calls as well as receiving from third parties and maintaining trusted

notifications regarding evidence, on which reputation computation will be based. Considerations also exist

regarding the efficiency of the code: a simple simulation involving 10 “good” nodes, 20 “bad” nodes and 20
“Sybil” nodes, and having few interactions between nodes, 15.5 seconds were needed to run it on a Linux
server with one 6-core Xeon E5-2420@1.90GHz CPU and 8GB of memory, and requiring a virtual memory

size of 1.15GB (albeit the resident set was only 80MB; the required size of virtual memory can pose problems

in mobile or –more generally- resource-constrained devices).

Concepts used in Retrust (evidence-based assessments, multiple perspectives) have been included in the

Cyber-Trust TMS implementation.

3.3.8 Systems in other domains of use

The Linux SGX Trust Management Framework (https://github.com/IBM/sgx-trust-management) is a system

for supporting the Software Guard Extension technology, available in Skylake and later processors. SGX

technology supports the creation of enclaves, i.e., secure memory regions that are protected with hardware

https://github.com/liamzebedee/retrust
https://github.com/IBM/sgx-trust-management

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 51

encryption in the system-on-chip (SoC). In more detail, according to the SGX framework, the data exists in

unencrypted format only inside the processor. Before being written to the main memory it is encrypted by

the SoC and then decrypted by the SoC when fetched from the main memory.

TrustApp (https://github.com/dedicatedvivek/TrustApp) is a financial risk assessment application, with its

core model involving banks and expenses. Furthermore, it lacks documentation and the code does not readily

run on Unix due to some non-portable conventions.

TrustFeatures (https://github.com/hashinclude-co-in/kamban.org) is oriented towards non-governmental

organisation (NGO) members and volunteer management; to this end it includes features such as contact

management, survey management, event management, inventory management and task management.

These aspects do not intersect with the functionalities needed in the context of Cyber-Trust.

Imob (https://github.com/zeqing-guo/imob) claims to implement “an identity and trust relationship
management on blockchain for IoT”, however no relevant functionalities or documentation are implemented
in the code.

Trust Management System (https://github.com/shiwenbo/Trust-Management-System) accommodates the

concept of nodes that are verified by credentials and assume roles, however there is no notion of trust and

risk metric computation.

The Tennessee Risk Management Trust (https://github.com/lindseyemaddox/tnrmt) is oriented towards

economic insurance, and its core concepts are loss control, property and liability, tort liability etc. In this

respect, its scope does not intersect with the functionalities needed in the context of Cyber-Trust.

The CA system (https://github.com/pontiflex/trustme/tree/master/CA) is a web-based application,

appearing to suite the management of certificates. Its functionality is limited, with a very limited overlap with

the functionalities needed in the context of Cyber-Trust, while issues exist in the setup process and no

updates have been provided for 6 years.

Trust composer (https://github.com/ricktobacco/trust-composer) is a web application for demonstrating a

secure trust composer on blockchain using Hyperledger composer. The model realized by Trust composer

involves claims for service/resource accesses issued by users; these claims are supported by proofs, whereas

assessors are a specific subclass of users that provide guarantees to support a user’s claims. Finally, services

maintain a trust balance of users they manage and consider claims, together with associated proofs and

assessor-issued guarantees to accept or deny requests. In more detail:

• Users are the super class of all other participants. They have a name and may create claim request

assets, which may be further used to build trust for exchange against access balances with services.

• Issuers issue claim receipts based on users' requests, upon examination of proofs therein. They are

the super class of services, subclass of assessors, and have a list of assessors operating on their behalf.

• Services upload resources with their associated access costs, and maintain a list of balances for the

users that have requested access and also been granted trusts by assessors operating on behalf of

the service.

• Assessors operate on behalf of services and issuers to package claim receipts, and assign levels of

trust according to their own weights for various claim definitions (based on their verification

specializations).

The example usage listed in the TrustComposer distribution is oriented towards the economics domain,

persons submitting claims for damages they sustained from disasters or hospitals (as service providers)

considers level of guarantee from assessors (e.g., insurance companies) to grant resources, some concepts

might be used in the Cyber-Trust TMS; however, implementations that are closer to the Cyber-Trust

domain, in particular ReTrust, provide more direct analogies, hence TrustComposer will not be further

considered.

https://github.com/hashinclude-co-in/kamban.org
https://github.com/zeqing-guo/imob
https://github.com/shiwenbo/Trust-Management-System
https://github.com/lindseyemaddox/tnrmt
https://github.com/pontiflex/trustme/tree/master/CA
https://github.com/ricktobacco/trust-composer

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 52

3.4 Conclusions and directions

In this section we have reviewed the aspects regarding trust management and risk assessment, which have

been taken into account in the development of the Cyber-Trust TMS component.

In particular, the Cyber-Trust TMS will exploit behavioural aspects and status assessments to determine the

trust status of individual devices, while trust levels, combined with environmental aspects (e.g. threat agents

and security controls) can derive risk levels. We have also performed a review of the state-of-the-art trust

models, which describe how independent entities can operate in the context of a distributed system to

exchange, synthesize, propagate and update trust metrics. From these models, we have extracted the trust

relationships that are pertinent to the Cyber-Trust context (user-to-user, user-to-device), and these

relationships are included in the Cyber-Trust TMS.

A number of contemporary trust management models have been examined: some of them are specifically

designed for the IoT domain, however a number of them have not be proven to be resilient to attacks [31],

[24] or have been shown to resist only very few attacks [21], [23], [30]. The trust models described in [25]

and [27] have been shown to be capable of withstanding most attacks: [27] includes a centralized

propagation aspect which could introduce bottleneck problems in a highly populated network, albeit it could

fit the domain of a smart home, or an enterprise. From the non IoT-specific models, the one proposed by

Chen, [15] encompasses many defences against attacks and has been designed in a generic fashion; however,

it should be tested in the context of large-scale IoT. The properties of the models that (a) contribute to the

resilience of the system and (b) do not impose high level of expertise by the users or disproportional

resources and (c) allow a performing implementation that can be deployed in the scope of the Cyber-Trust

domain will be exploited. In particular, social relationships between users; user-to-device relationships; and

cooperation between trusted TMSs, in a peer-to-peer fashion.

The data needed by each model for its operation have also been considered. Some models require data that

carry application-level semantics, such as competence, cooperativeness and honesty, and -in order to have

such data available- applications should be trust-aware i.e. are programmed to (a) assess the trust level of

their peers and (b) compute the trust assessment based on the observable behaviour of their peers and (c)

provide trust feedback to the entity computing the trust (i.e. the TMS). Since applications at this stage do not

operate in this fashion, neither such operations are facilitated by existing libraries and underpinnings, a

design decision was taken to not use such data, and limit the data to be used to those that can actually be

obtained from existing technologies, such as signature-based and behaviour-based IDS and IPS systems, as

well as health attestation systems. Nevertheless, the TMS is designed in an extensible fashion, to enable the

incorporation of additional information into the trust computation process.

Regarding trust management system implementations, none of the identified implementations was assessed

as usable in the context of Cyber-Trust: many of them are out of context (pertaining to other domains), while

other implementations present different challenges, including lack of features, implementation languages

that are not appropriate for mobile platforms or for which the consortium lacks experience, large footprints

or performance issues. Taking these into account, a Java-based implementation was opted for, since Java

provides an omnipresent and portable environment, capable to run on multiple devices ranging from high-

end desktop computers to Android devices or even Arduino processors [59].

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 53

4. Cyber-Trust TMS design

In this section, we present in detail the design of the Cyber-Trust TMS. In this context, we first describe the

generic model for trust computation (subsection 4.1), as well as on the relationship between the TMS and

other components of the Cyber-Trust architecture. Subsequently, in subsection 4.2, we elaborate on the

methods used for the computation of trust. Finally, in subsection 4.3, we provide details on the internal

structure on the TMS.

4.1 Generic model

Figure 4.1. The entities in the IoT and SOHO environments and their relationships depicts the entities

considered by the Cyber-Trust trust model in the IoT/Smart home/SOHO environments and the relationships

between these elements. The elements are as follows:

Figure 4.1. The entities in the IoT and SOHO environments and their relationships

• Devices, that operate within the considered environment.

• Users, who own devices. A single user may own multiple devices. Users may develop trust

relationships between them; trust relationships between users are directed, not necessarily

symmetrical, not transitive and weighted, i.e.:

o Some user u1 declares to trust some other user u2, providing a trust level, expressing u1’s
confidence that u2 will not act in a way that is harmful for u1 -or even will act in a way that is

beneficial for u1.

o The assertion of trust towards u2 made by u1 does not imply in any way that u2 also trusts u1,

expressing the fact that trust may not be reciprocated [23]. It is still however possible that u2

makes a separate, independent assertion that s/he trusts u1; such an assertion may express

a different trust level than the respective assertion made by u1.

o Trust is not transitive: if u1 trusts u2 and u2 trusts u3, no assumption is made that u1 trusts u3.

An explicit assertion by u1 is required to establish any trust relationship to any other user in

the domain of discourse.

• Trust Management System instances (TMS): these are software agents operating within the

considered environment and implement functionalities for computing trust levels towards devices.

To compute the value of trust towards a device, the TMS synthesizes multiple pieces of information,

either explicitly provided or gathered through observations. These pieces of information are:

o the status of the device: this encompasses (1) information regarding the device integrity, i.e.

the extent to which the device is known to run legitimate firmware/operating

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 54

system/software under a validated configuration, as contrasted to the case that the device

firmware/operating system/software/configuration files have been tampered with; and (2)

information regarding the device resilience, i.e. the extent to which the device

firmware/operating system/software/configuration are known to have security

vulnerabilities, as contrasted to the case that no such known vulnerabilities exist.

o the behaviour of the device: this includes information regarding whether:

1. the device has been detected to launch attacks, or be target of attacks.

2. the device’s resource usage metrics are within a pre-determined range which is

considered to be “normal” or deviate from it. The metrics can pertain to any
observable aspect of resource usage metrics, e.g. CPU load, network usage or disk

activity. Practically, any class of system metrics that can be quantified, and for which

baseline metrics can be created so as to allow computation of deviations from the

baselines is eligible for incorporation within this dimension. Similar practices are

widely employed in monitoring infrastructures, such as Nagios [60], and may include

metrics such as number of connected users, amount of free disk, total number of

processes, number of processes corresponding to some specific service instance, etc.

3. the device complies with pre-specified behaviour which has been whitelisted as

benign. MUD specification [61] files are the most prominent source of such

information, albeit their adoption and manufacturer support is lagging behind

expectations.

o the risk associated with the device. Devices within the IoT may be attacked, and some attacks

may be successful. The probability that each device is finally compromised can be computed

taking into account only technical information, such as the reachability of the device and the

vulnerabilities present on it, and attack graphs are a prominent tool for supporting such

computations [62]. However, not all compromises have the same level of impact on the

organization/person owning the device: the level of impact is moderated by the perceived

value of the device. The perceived value of the device in turn is moderated by (a) the assets

that the device hosts (e.g. a database) or the value/criticality of the dependent processes

that the device supports (e.g. a temperature sensor may support a simple temperature

reading application or the automated cooling system of a nuclear reactor).

Furthermore, in the context of sophisticated, multi-staged attacks, a compromised device d

may be used as a stepping-stone, enabling the attackers to launch attacks against other

devices which are reachable from d and may be otherwise unreachable (or harder to reach),

if d were not compromised. Notably, the devices that are reachable from d contain

themselves assets that have a business value, and the technical probability that these devices

are compromised in the context of multi-staged attacks can be jointly considered with the

respective business values to provide an additional aspect of the risk associated with device

d.

o The associated risk dimension combines the above-mentioned aspects i.e. (i) the technical

probability that the device is compromised with the perceived value of the device, and (ii)

the probability that the device is used as a stepping stone to attack other devices, in

conjunction with the business values of the assets associated to these devices, to synthesize

a single, comprehensive metric expressing the business risk applicable to a device.

o The trust relationship between the owners of the device running the TMS and the owner of

the device, for which the trust evaluation is conducted. This aspect allows the propagation

of the trust between users to the level of the devices they own.

The three separate trust dimensions, i.e. (i) status-based, (ii) behaviour-based and (iii) associated risk-based

trust, are synthesized by the TMS instances into a single overall trust assessment.

Furthermore, directed, not necessarily symmetrical, not transitive and weighted trust relationships can be

established between TMS instances, in the same fashion that trust relationships are established between

users. The trust relationships between TMS instances are explicitly provided by the users owning the devices

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 55

on which TMS instances are run. Once a trust relationship stating that TMS instance T1 trusts TMS instance

T2 is established, T1 will source trust assessments for devices from TMS T2, and take them into account when

computing the respective devices’ trust levels.

Finally, users are allowed to set explicitly the trust level of the devices they own, overriding the computations

made by the TMS. This provision is accommodated to handle false positives mainly related to network attacks

(an attack is flagged by relevant modules but was not actually performed), network anomalies (e.g. excessive

traffic was detected but this was due to a user-initiated backup or a software/firmware update) and

compromises (e.g. some software on the device was misclassified as malware). The TMS will be able to

provide both the automatically computed and the explicit trust level of the device, so that relevant

applications will be able to detect devices where major discrepancies exist and keep the users informed about

such deviations, promoting awareness and facilitating intervention, as needed.

According to the description listed above, the TMS composes the trust score in a hierarchical fashion, as

depicted in Figure 4.2. Trust score composition dimensions and aspects, undertaking a holistic view towards

trust assessment. To perform this composition, the TMS necessitates different types of information for each

device. The TMS operates in the broad context of the Cyber-Trust platform and sources the required

information from other Cyber-Trust modules, as depicted in Figure 4.3. Cyber-Trust platform elements

providing information to the TMS.

Figure 4.2. Trust score composition dimensions and aspects

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 56

Figure 4.3. Cyber-Trust platform elements providing information to the TMS

In more detail, the information sourced from other Cyber-Trust platform elements is as follows:

• Cyber-Trust platform users provide information regarding the peer users they trust, the peer TMSs

that are trusted and explicit device trust specifications. Naturally, user interaction with the TMS is

mediated through an appropriate application.

• The CyberDefense module provides data regarding the network anomalies detected (deviations from

the nominal device and network behaviour), the non-compliant traffic (traffic flows that have not

been whitelisted as “acceptable behaviour” for the device) and network attacks (primarily in the
context of signature-based detection), either originating from some device or targeted against it.

• The iIRS module provides information regarding the devices that are in the scope of the TMS, their

importance, the vulnerabilities existing on devices, events of device compromises, as well as network

topology and reachability information. Notably, some of these information elements could be

sourced from other components, especially the Device profile repository, however the iIRS module

synthesises individual information elements served by the Device profile repository into more

comprehensive representations, hence it was chosen to retrieve the data from the iIRS module for

optimization purposes.

• The eVDB module provides information on the detected vulnerabilities, including their impact,

underpinning the assessment of the impact that vulnerabilities may have on the trust level of the

affected device.

• The Device profile repository provides information on the cases that a device is removed from the

system and when the device health is restored after a compromise (i.e. the malware is removed or

“clean” versions of the operating system/firmware are installed).

• The TMS, acting as a trusted peer entity, provides trust assessments which are combined by the

receiving TMS instance with the own device trust estimations, to synthesize a comprehensive trust

score.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 57

The TMS, in turn, publishes information regarding changes in the trust level of the devices through the Cyber-

Trust information bus. This information can be exploited as follows:

• Cyber-Trust operator and end-user interfaces may use this information to generate alerts, especially

in the cases of noteworthy trust demotion.

• Defence mechanisms, and in particular the iIRS can exploit this information to apply or disable

restrictions in network traffic.

• The Device repository updates its own database, guaranteeing information consistency and

dissemination of the trust level to any other interested component.

• Peer TMSs can use this information to update their trust assessments.

Figure 4.4. TMS: Outgoing information flows depicts the TMS outgoing information flows.

Figure 4.4. TMS: Outgoing information flows

4.2 Trust computation

As described in subsection 3.1, the TMS synthesizes a comprehensive trust score, taking into account the

following aspects for a device:

• Its status, i.e. the health state of the device and the existence of vulnerabilities.

• Its behaviour, i.e. the observed elements of network traffic involving the device, as well as data

regarding in-device activity (number of processes, disk I/O and so forth)

• The risk associated with the device, i.e. the impact of any value demotion of the device, both towards

the loss of assets (data and services) hosted on the device as well as towards the potential use of the

device as a stepping stone for further attacks against the infrastructure, after some compromise

permitting code execution.

• The peer TMS trust assessments for this device.

• The trust relationships between the owner of the device hosting the TMS (which coincides with the

owner of the protected infrastructure, e.g. smart home or SOHO) and the owner of the device whose

trust is assessed.

In this subsection, we describe in detail the methods used for computing the different dimensions of the

device trust, and synthesizing these dimensions into a comprehensive trust score.

4.2.1 Computation of the status-based trust score

The trust-based score of a device D comprises the following two aspects:

• the integrity aspect, which relates to whether the software components of the device (firmware,

operating systems and generic software applications) are integral or have been tampered with; this

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 58

status aspect is denoted as SBTI(D). When some device has been detected to be compromised, the

TMS sets SBTI(D) to zero. SBTI(D) is restored to one when the health of a device is explicitly designated

to be restored (typically through manual intervention).

• the vulnerability aspect, which relates to whether the software bears weaknesses which can be

exploited to compromise the device. In this context, only vulnerabilities having a network or adjacent

attack vector [63] (i.e. vulnerabilities that can be exploited remotely) are considered. Each

vulnerability has an associated impact score, expressing the impact of the vulnerability, taking into

account the effect that it may have on the value of the device as well as the exploitability of the

vulnerability [63]. Therefore, the overall vulnerability impact metric for device D, denoted as

OVIM(D), can be calculated as 𝑂𝑉𝐼𝑀(𝐷) = ∑ 𝑛𝑒(𝑣) ∗ 𝑖𝑚(𝑣)10𝑣∈𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝐷) (1)

where:

o vulnerabilities(D) is the set of vulnerabilities present on device D;

o ne(v) is equal to 1 if vulnerability v is remotely exploitable or zero, otherwise and

o im(v) is the impact metric for vulnerability v; the value of im(v) is divided by 10 to normalize

its range into [0, 1], since the CVSS specification [63] designates a range [0, 10].

The value of OVIM(D) can be arbitrarily high, depending on the number of vulnerabilities present on

D. Its value can be normalized in the range [0, 1] to produce the status score related to the aspect of

vulnerabilities for device D, denoted as SBTV(D), by employing equation (3). 𝑆𝐵𝑇𝑉(𝐷) = 1 − 𝑒−𝑂𝑉𝐼𝑀(𝐷) (2)

The effect of the value of OVIM(D) on SBTV(D) can be regulated by multiplying the value of OVIM(D)

in the exponent of equation (3) by an amortization factor saf; higher values of saf will lead to a faster

convergence of SBTV(D) to the value of 1.

The value of SBTV is modified when new vulnerabilities are associated with the device and when

vulnerabilities are mitigated (e.g. by installation of a patch, removal of the vulnerable software

components etc.).

Finally, the partial status-based scores SBTI(D) and SBTV(D) are combined to formulate an overall status-based

trust assessment for device D, which is denoted as SBT(D). This is accomplished using equation (3). 𝑆𝐵𝑇(𝐷) = 𝑆𝐵𝑇𝐼(𝐷) ∗ 𝑆𝐵𝑇𝑉(𝐷) (3)

According to equation (3), if the device is compromised, its status-based trust score will be equal to zero

(since factor SBTI(D) will be equal to zero); if the device is not compromised, its status-based trust score will

be determined by the overall impact of vulnerabilities on the device.

4.2.2 Computation of the behaviour-based trust score

The behaviour-based trust score for a device D comprises three distinct aspects:

• Compliance, corresponding to whether D in accordance to some rules which describe benign

behaviour for the particular device; the score for this behavioural aspect is denoted as BBTC(D). This

aspect mainly applies to network traffic, and in this context the MUD specification is the prevalent

approach [61], defining compliance through a set of rules designating the allowed traffic flows. When

D sends traffic that does not adhere to such rules, it is flagged as non-compliant and BBTC(D) is set to

zero. However, the non-compliance penalty should not remain indefinitely, since the deviation may

be coincidental: for instance, the system administrator could issue a command initiating a non-

compliant traffic flow, in an otherwise benign system. To guard against cases of indefinite demotions

of compliance-related trust scores, the TMS restores BBTC(D) at some specific rate, which is

moderated through a respective system parameter, TSRRcompliance. Should the device continue to

exhibit non-compliant behaviour, BBTC(D) will be again set to zero.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 59

• Normal behaviour, corresponding to whether the observable aspects of resource usage metrics

exhibited by the device fall in the range that is typically exhibited by the device, as determined by

the collection and classification of historical device behaviour data; the score for this behavioural

aspect is denoted as BBTN(D). When abnormal behaviour is detected, the TMS decreases BBTN(D);

the deduction made to BBTN(D) is equal to the degree of deviation from the nominal metrics: in

particular, the degree of deviation is computed as 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑀𝑎𝑥𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒 − 𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝑅𝑎𝑛𝑔𝑒𝐻𝑖𝑔ℎ𝐸𝑛𝑑𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑀𝑎𝑥𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒 (4)

In the case that the deduction results to a negative value for BBTN(D), the value of BBTN(D) is reset to

zero. Similarly to the case of compliance, the value of BBTN(D) is gradually restored at some specific

rate, to guard against coincidental deviations (e.g. an unanticipated update operation or a backup

operation producing higher bulks of data transfers than nominal volumes; or when a device is under

a DDoS attack, the network metrics -and probably CPU metrics- may deviate from the respective

nominal values), the TMS restores BBTN(D) at some specific rate, which is moderated through a

respective system parameter (TSRRnominality). Should the device continue to exhibit deviant behaviour,

BBTN(D) will be repetitively reduced and thus maintained at low levels.

• Malicious activities, corresponding to the detection of attacks being launched from D; the score for

this behavioural aspect is denoted as BBTM(D). When launching of attacks is detected, the TMS sets

BBTM(D) to zero. Contrary to the cases of BBTM(D) and BBTM(D), the TMS does not restore the value

of BBTM(D), since the launching of an attack is deemed improbable to be coincidental. BBTM(D) can

only be restored when the health of a device is explicitly designated to be restored (typically through

manual intervention).

The TMS synthesizes the values pertaining to the different aspects of the behaviour-based trust dimension

into a single, comprehensive score for behaviour-based trust, which is denoted as BBT(D). The value of is

computed according to formula (5): 𝐵𝐵𝑇(𝐷) = 𝐵𝐵𝑇𝐶(𝐷) ∗ 𝐵𝐵𝑇𝑁(𝐷) ∗ 𝐵𝐵𝑇𝑀(𝐷) (5)

According to formula (5), a major demotion the score of any of the behavioural aspects leads to a low value

for the behaviour-based trust dimension.

4.2.3 Computation of the associated risk-based trust score

The risk-based trust score dimension combines the technical probability that a machine is compromised with

the level of the damage that would be sustained to the owner of the machine/infrastructure as a result of

this compromise, to accommodate a business-oriented security aspect, in line with the information system

risk assessment model [64], [65].

To this end, in order to compute the associated risk-based trust score for machine D the TMS employs the

following algorithm:

1) It combines the probability that machine D is compromised with the perceived impact of the machine

compromise, as explicitly entered by the user. This is accomplished using the widely used risk

assessment matrix (adapted from [65]) shown in Error! Reference source not found..

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 60

Table 4.1. Risk level computation

Severity level

Probability of occurrence

Highly probable Probable Medium Remote Improbable

Catastrophic Catastrophic Catastrophic Catastrophic Serious Medium

Severe Catastrophic Catastrophic Serious Medium Low

Normal Catastrophic Serious Medium Low Negligible

Minor Serious Medium Low Negligible Negligible

Negligible Medium Low Negligible Negligible Negligible

If the compromise probability is given using a numeric value 0 ≤ p ≤ 1, it is converted into a fuzzy label

as shown in equation (6):

𝐹𝐿𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒(𝑝) = {
 𝐼𝑚𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑖𝑓 0 ≤ 𝑝 ≤ 0.1𝑅𝑒𝑚𝑜𝑡𝑒 𝑖𝑓 0.1 < 𝑝 ≤ 0.3𝑀𝑒𝑑𝑖𝑢𝑚 𝑖𝑓 0.3 < 𝑝 ≤ 0.6𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑖𝑓 0.6 < 𝑝 ≤ 0.85𝐻𝑖𝑔ℎ𝑙𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑖𝑓 0.85 < 𝑝 ≤ 1 (6)

The use of the table in Error! Reference source not found. results in the computation of a fuzzy risk

labels, constituting the fuzzy label singular risk assessment for device which is denoted as SRAFL(D).

Fuzzy labels can be converted to numeric ratings by dividing the range [0,1] in a number of strata

(0.0; 0.25; 0.5; 0.75; 1.0) and mapping fuzzy labels to the corresponding stratum value. This

constitutes the numerical singular risk assessment for device D, and is denoted as SRAL(D), i.e.:

𝑆𝑅𝐴𝐿(𝐷) = {
 0 𝑖𝑓 𝑆𝑅𝐴𝐹𝐿(𝐷) = 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒0.25 𝑖𝑓 𝑆𝑅𝐴𝐹𝐿(𝐷) = 𝐿𝑜𝑤0.5 𝑖𝑓 𝑆𝑅𝐴𝐹𝐿(𝐷) = 𝑀𝑒𝑑𝑖𝑢𝑚0.75 𝑖𝑓 𝑆𝑅𝐴𝐹𝐿(𝐷) = 𝑆𝑒𝑟𝑖𝑜𝑢𝑠1 𝑖𝑓 𝑆𝑅𝐴𝐹𝐿(𝐷) = 𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 (7)

2) Furthermore, if D is compromised in a fashion that allows remote code execution, the machine can

be used by the attacker as a stepping-stone to commit attacks against other machines within the

protected infrastructure, leading thus to the potential of additional impact being incurred on the

organization and, consequently, higher risk levels. To accommodate this dimension, the TMS

considers (a) the probability that D is compromised in a fashion that allows remote code execution,

(b) the neighbouring devices of D, (c) the vulnerabilities of each of the neighbouring devices that

would permit remote exploitation and the severity of each one of them and (d) the perceived value

of each of the neighbouring devices. To compute this dimension, the TMS first computes the

cumulative effect on the risk on neighbouring infrastructure stemming from the potential

compromise as 𝐶𝐶𝐸𝑁(𝐷) = ∑ 𝑆𝑅𝐴𝐿(𝑛)𝑛∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝐷) (8)

The CCEN(D) quantity computed according to equation (8) may be arbitrarily high, while it does not

consider the base probability that device D is compromised. To normalize the CCEN(D) in the range

[0, 1] and accommodate the probability that D is compromised, TMS uses the CCEN(D) quantity com

and the probability that D is compromised (PRC(D)) to compute the amortized cumulative

compromised effect on neighbouring infrastructure as depicted in equation (9): 𝐴𝐶𝐶𝐸𝑁(𝐷) = 𝑃𝑅𝐶(𝐷) ∗ (1 − 𝑒−𝐶𝐶𝐸𝑁(𝐷)) (9)

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 61

The effect of the value of CCEN(D) on ACCEN(D) can be regulated by multiplying the value of CCEN(D)

in the exponent of equation (9) by an amortization constant af; higher values of af will lead to a faster

convergence of ACCEN(D) to the value of PRC(D).

3) Finally, the values of SRAN(D) and ACCEN(D) are combined to compute the overall risk assessment for

device D. This is performed using the formula in equation (10): 𝐴𝐵𝑇(𝐷) = 1 − (1 − 𝑆𝑅𝐴𝑁(𝐷)) ∗ (1 − 𝐴𝐶𝐶𝐸𝑁(𝐷)) (10)

The rationale behind equation (10) is that factor (1 − 𝑆𝑅𝐴𝑁(𝐷)) represents the “risk-freeness”
directly associated with D, whereas factor ∗ (1 − 𝐴𝐶𝐶𝐸𝑁(𝐷)) represents the “risk-freeness”
indirectly associated with D; Thus, the overall “risk-freeness” is the product of the two factors, while
the complementary value (1 minus the product) is the total risk, comprising both the direct and

indirect dimensions.

4.2.4 Synthesizing the status-based, behaviour-based and associated risk-based scores

The three dimensions of trust, whose calculation was presented in sections 4.2.1-4.2.3 are synthesized, in

order to produce a comprehensive trust score, which considers all trust-related aspects of the device. This

comprehensive score reflects the local view of the TMS computing the trust level, and will be referred to as

local trust assessment (LTA).

Several methods for the combination of individual trust scores can be employed, as reported in the

bibliography. The most widely used ones are:

1. Simple additive weighting [66]: according to this method, a weight is attached to each of the

dimensions, with the sum of weights being equal to 1. Effectively, for the case of the TMS, three

weights ws, wb and wa would need to be defined, associated with the status, behaviour and

associated risk, respectively, with 0 ≤ ws, wb, wa ≤ 1 and ws + wb + wa =1. Then, the local trust

assessment for device D, LTA(D) would be: 𝐿𝑇𝐴(𝐷) = 𝑤𝑠 ∗ 𝑆𝐵𝑇(𝐷) + 𝑤𝑏 ∗ 𝐵𝐵𝑇(𝐷) + 𝑤𝑎 ∗ 𝐴𝐵𝑇(𝐷) (11)

Considering the values of ws, wb and wa, we may note that the behaviour trust score is based on

evidence on the activity of the device; on the other hand, the presence of vulnerabilities on a device,

while undesirable, may or may not lead to its compromise (depending on a number of factors such

as the reachability of the device or the perceived value of the device for attackers). Consequently,

we expect that wb > ws. Similarly, the associated risk dimension pertains to events that may occur,

and correspondingly wb > wa.

2. Fuzzy simple additive weighting [67]. This is similar to simple additive weighting, however explicit

values of trust dimension assessments are first converted to fuzzy labels, e.g. “Low”, “Medium”,
“High” and subsequently synthesized accordingly. A variant of this method is stratified trust [68],

where each individual trust score is first rounded to a “close” stratum value using the formula 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦𝑠(𝑡) = ⌈𝑡 ∗ 𝑠⌉ (12)

where s is the number of strata used for the stratification.

3. Multiplicative [67], where the values of the different trust dimensions (being in the range [0, 1]) are

multiplied together to compute the final score; in the case of the TMS this is formulated as 𝐿𝑇𝐴(𝐷) = 𝑆𝐵𝑇(𝐷) ∗ 𝐵𝐵𝑇(𝐷) ∗ 𝐴𝐵𝑇(𝐷) (13)

Formula (13) considers all dimensions equally, e.g. the demotion to the overall LTA(D) score incurred

when SBT(D) decreases by some factor (say 10%), is equal to the demotion incurred by an equal

decrement to the BBT(D) score. This however is not in-line with the remark made above, according

to which behaviour-based scores should be taken into account more strongly than status-based

scores. This can be tackled using mapping functions that map the range [0, 1] of score dimensions to

ranges of the form [lowerBound, 1], where 0 ≤ lowerBound ≤ 1, attenuating thus the effect of trust
demotions in a specific dimension on the overall trust assessment. For instance, the status-based

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 62

score could be mapped to the range [0.5, 1] using the formula 𝑆𝐵𝑇𝑚𝑎𝑝𝑝𝑒𝑑(𝐷) = 0.5 + 𝑆𝐵𝑇(𝐷)2 , and

subsequently the 𝑆𝐵𝑇𝑚𝑎𝑝𝑝𝑒𝑑(𝐷) value would be used in formula (13) instead of SBT(D); under this

arrangement, any demotion of the SBT(D) score would have half the effect on the value of LTA(D) as

compared to an equal demotion of BBT(D).

4.2.5 Incorporating the trusted peer TMS-source based trust score

The user U owning a specific TMS T may have designated a set of trusted TMSs, TTMS={TTMS1, TTMS2, …,
TTMSn}, which can be consulted in order to combine the view of an individual TMS instance towards the trust

level of the device with the respective views of its peers, in order to synthesize a comprehensive trust

assessment. The rationale behind this synthesis is that the view of T is only based on the information that T

has observed (through its notifications from other Cyber-Trust components, as detailed in subsection 4.1),

and this information may be incomplete: for example, other TMS instances may have observed attacks or

deviations from nominal metrics that T has not observed, or, inversely, T may have only witnessed some

suspicious behaviour whereas other TMS instances may testify that the device’s behaviour is typically normal.
This can be particularly true in situations entailing mobility, where some wireless communications may be

missed due to the distance between the device and Cyber-Trust components (e.g. the Cyber Defence

module), or where the device may move across different Smart Home/SOHO environments.

When assessing the trust level of some device D, T will retrieve the trust assessments for D offered by the

elements of TTMS. However, some of them may not be able to offer an assessment for D, e.g. because they

have no information regarding D. Without loss of generality, we will assume that only the first k elements of

TTMS are able to offer a trust assessment for device D; the notation TATTMSi
(D) will denote the trust

assessment offered by TTMSi for device D, where 1 ≤ i ≤ k. Furthermore, recall from subsection 4.1 that for

each trusted TMS peer TTMSi, a trust level is provided, denoting the degree confidence that the trust

assessments of TTMSi are accurate. This trust level will be denoted as TL(TTMSi).

The trust assessments offered for D by TTMS1, TTMS2, …, TTMSk are synthesized into a comprehensive peer

TMS assessment score using the following equation: 𝑃𝑇𝐴(𝐷) = ∑ 𝑇𝐴𝑇𝑇𝑀𝑆𝑖(𝐷) ∗ 𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘𝑖=1)∑ 𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘𝑖=1) (14)

which moderates the strength that each peer TMS assessment is taken into account in the final score by the

trust level of the offering TMS.

Equation (14) considers the recommendation provided by each peer TMSs with a weight equal to the one

specified for the particular TMS, without taking into account the probability that the device on which it is

hosted is compromised (this includes the case that the TMS itself is compromised, since in this case the

machine will run tampered software, demoting at least the device’s status-based trust). If the device on which

the peer TMS is compromised, the peer TMS may provide falsified trust assessments to serve the attacker’s
purposes. To defend against such cases, an effective trust level computed and considered for each peer TMS

TTMSi, which takes into account (a) the trust level assigned to the peer TTMSi and (b) the trust assessment

of the device hosting TTMSi. The effective trust level of TTMSi will be denoted as ETL(TTMSi) and is computed

as shown in equation (15): 𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖) = 𝑇𝐿(𝑇𝑇𝑀𝑆𝑖) ∗ 𝐿𝑇𝐴(𝐷𝑒𝑣(𝑇𝑇𝑀𝑆𝑖)) (15)

where Dev(TTMSi) denotes the device on which TTMSi runs on, while LTA(D) is the local trust assessment for

this device (c.f. subsection 4.2.4). Under this view, equation (14) is rewritten as 𝑃𝑇𝐴(𝐷) = ∑ 𝑇𝐴𝑇𝑇𝑀𝑆𝑖(𝐷) ∗ 𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘𝑖=1)∑ 𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘𝑖=1) (16)

For the particular device D, T will have computed a score LTA(D) based on its own observations (c.f.

subsection 4.2.4). LTA(D) is then be combined with the peer TMS assessment score formulating the

community trust assessment CTA(D) using the following equation:

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 63

𝐶𝑇𝐴(𝐷) = 𝐿𝑊 ∗ 𝐿𝑇𝐴(𝐷) + (1 − 𝐿𝑊) ∗ 𝑃𝑇𝐴(𝐷) (17)

where LW is a weight assigned to the local trust assessment (0 ≤ LW ≤ 1): higher values of LW indicate that

the local trust assessment is taken more strongly into account for the computation of the community trust

assessment, whereas lower values of LW attenuate the importance of the local trust assessment in favour of

the peer TMS trust assessment.

However, equation (17) does not take into account the fact that peer TMSs may either not offer any trust

assessment on D, or the case that only few trust assessments may be received, which are offered by peer

TMS instances with a low trust score (in which case the confidence towards the 𝑃𝑇𝐴(𝐷) score will be low).

To tackle this issue, LW may be computed in an adaptive fashion, depending on the trust levels of the peer

TMSs that have offered a trust assessment on D. Under this view, LW(D) will computed as:

𝐿𝑊(𝐷) =
{
 𝐿𝑊𝑚𝑖𝑛 𝑖𝑓∑𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘

𝑖=1) ≥ 𝑃𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (1 − 𝐿𝑊𝑚𝑖𝑛) ∗ ∑ 𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘𝑖=1)𝑃𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝐿𝑊𝑚𝑖𝑛 𝑖𝑓∑𝐸𝑇𝐿(𝑇𝑇𝑀𝑆𝑖𝑘

𝑖=1) < 𝑃𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (18)

Equation (18) considers a minimum weight 𝐿𝑊𝑚𝑖𝑛 that will be assigned to the local trust assessment; this

value will be used when the cumulative trust level of peer TMSs offering trust assessments on D exceeds

some threshold PTthreshold. If, however, the cumulative trust level of peer TMSs is below the value of PTthreshold,

the value of LW(D) increases, decreasing correspondingly the weight assigned to peer TMS assessment score,

since the latter is deemed to be of low confidence. Under this view, equation (17) is modified as: 𝐶𝑇𝐴(𝐷) = 𝐿𝑊(𝐷) ∗ 𝐿𝑇𝐴(𝐷) + (1 − 𝐿𝑊(𝐷)) ∗ 𝑃𝑇𝐴(𝐷) (19)

where LW(D) is computed as listed in equation (18).

4.2.6 Incorporating user-to-user trust relationships and computing the final trust score

The trust assessment of a device, as computed in subsection 4.2.5 is an objective measure, synthesizing the

status, behaviour and associated trust dimensions observed by the TMS, as well as the views of trusted peer

TMSs3. In the final step, the TMS takes into account the trust relationships between the users of the Cyber-

Trust platform, and in particular between the owner of the TMS U and the owner of device D, who will be

denoted as Owner(D). The trust level between two users U1 and U2 of the Cyber-Trust platform is denoted as

UT(U1, U2) and is computed as follows:

𝑈𝑇(𝑈1, 𝑈2) = {
 1 𝑖𝑓 𝑈𝑖 = 𝑈2𝐸𝑇𝑆(𝑈1, 𝑈2) 𝑖𝑓 𝑈1 ℎ𝑎𝑠 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎 𝑡𝑟𝑢𝑠𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑈2 𝑤𝑖𝑡ℎ 𝑎 𝑡𝑟𝑢𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐸𝑇𝑆(𝑈1, 𝑈2)𝑈𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠 (20)

UTdefault is a parameter of the TMS, which can regulate the trust level assigned to devices for which the user

is unknown, and transitively to moderate the access levels granted to this class of devices.

The user trust level computed by equation (20) is finally used by the TMS to moderate the community trust

assessment computed by equation (19) and produce the final trust score as follows: 𝑇𝑆(𝐷) = 𝐶𝑇𝐴(𝐷) ∗ 𝑈𝑇(𝑂𝑤𝑛𝑒𝑟(𝑇), 𝑂𝑤𝑛𝑒𝑟(𝐷)) (21)

Equation (18) may be further refined to distinguish between devices that are registered to the Cyber-Trust

platform and devices that are not; this is based on the rationale that registered devices are associated with

3 Actually, the community trust assessment entails a degree of subjectivity, stemming from (a) which TMSs have been

chosen to be trusted (b) the degree of confidence to those TMSs.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 64

a physical person who is accountable for the activities of the device, and therefore the probability that such

a device is deliberately launching attacks is limited. Under this view, equation (20) can be rewritten as:

𝑈𝑇(𝑈1 , 𝑈2) =
{

 1 if 𝑈𝑖 = 𝑈2𝐸𝑇𝑆(𝑈1, 𝑈2) if 𝑈1 has explicitly established a trust relationship towards 𝑈2 with a trust level equal to 𝐸𝑇𝑆(𝑈1 , 𝑈2)𝑈𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 if no explicit trust relationship is establised between𝑈1 and 𝑈2 𝑎𝑛𝑑 𝑈2 is registred to the Cyber-Trust platform𝑈𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡.𝑢𝑛𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 If 𝑈2 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (not registered to the Cyber-Trust platform)

 (22)

The result of equation (22) is then used as a user-to-user trust metric UT(U1, U2) in equation (21).

4.3 Detailed TMS architecture

This section reiterates on the TMS architecture, presenting a detailed view of its components and elaborating

on the tasks that each component undertakes and the functionalities it delivers.

Figure 4.5. Detailed view of the TMS architecture

Internally, the TMS comprises the following modules:

1) The TMS REST adapter: this module arranges for intercepting requests according to the REST

protocol. This layer arranges for ensuring that (a) requests adhere to the specifications of the REST

protocol, (b) are compliant with the implementations realized within the TMS (c) appropriately

extracting parameter values from requests so as to forward them to the appropriate implementation

of the requested functionality and (d) intercepting responses from the functionality

implementations, and formatting response elements according to the specifications of the REST

protocol, ensuring proper delivery of response data to the clients.

2) The triggering event reception component, which arranges for (a) subscribing to the proper channels

of the information bus (b) intercepting messages from channels to which subscriptions have been

established, (c) ensuring that intercepted messages are compliant with the Cyber-Trust

asynchronous message specifications (d) extracting and verifying message digital signatures and (e)

locating the appropriate implementation that is associated with the handling of the relevant message

category and delegate the handling of the message to the identified implementation.

3) The trust database (Trust DB) realizes persistent storage for the TMS; this component stores

information about the devices and their attributes, as well as any other piece of information needed

for the operation of the TMS (peer TMSs, trusted users, trusted devices and so forth). This module

also hosts the historical data of trust computations.

4) The controller component is the collection of code elements that realizes the handling of

functionalities that either realize functionalities requested through the REST adapter or

functionalities related to the handling of asynchronous messages. Effectively, the controller

component implements the business logic behind the TMS, and arranges for maintaining the

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 65

contents of the trust database up to date, by updating elements stored therein according to the

information flows intercepted by the TMS.

5) The computation components: the computation components implementing the trust score

computation procedures described in subsection 4.2. Computation components mainly process input

stemming either from incoming information flows or retrieved from the trust DB, however in certain

cases they necessitate information from other Cyber-Trust platform components, notably from the

eVDB; this information is fetched as needed.

6) The adaptation components, which arrange that the TMS operation is tailored to the particular

capabilities and particularities of its environment. While at an initial design stage this component

was mainly planned to adjust the trust computation procedures according to the resource

capabilities of the hosting platform (e.g. use more lightweight trust computation algorithms, as well

as offload computational procedures to more resource-rich trusted peers in device environments

with limited processing power, memory or power), this was found to be unnecessary, since the

resources needed by the trust computation algorithms are generally low). The only element of the

TMS that could necessitate adaptive behaviour is the internal caching of vulnerability information,

sourced from the eVDB, to avoid re-fetching of the same information and consequently improve

performance. While the amount of memory needed for the storage of data for each vulnerability is

low, in environments where the number of vulnerabilities present in all devices observed by the TMS

is very high and the available memory is constrained, the amount of memory allocated to the caching

of vulnerability information should be accordingly limited. This task is undertaken by the adaptation

component, which manages the vulnerability data cache accordingly.

7) The scheduled activities component performs tasks of periodic nature, which are triggered when

specific periods of time have elapsed. The TMS entails four periodic tasks:

a. The task replenishing the BBTC(D) score of devices, when some devices have been found to

exhibit non-compliant behaviour (c.f. 4.2.2).

b. The task replenishing the BBTN(D) score of devices, when some devices have been found to

deviate from their nominal behaviour (c.f. 4.2.2). Notably, when the period at which this task

should be performed coincides with the periodicity of the task replenishing the BBTC(D) score

of devices, the two tasks may be merged to promote efficiency.

c. The peer TMS assessment refresh task, which arranges for fetching updated device

assessment from trusted peer TMSs.

d. The historical data purging and anonymization task, which arranges so that historical trust

computation data are purged or anonymized after the expiration of the data retention

period.

Notably, periodic tasks (a)-(c) listed above are performed frequently, i.e. at intervals ranging from

minutes to a few hours, while task (d) is of considerably lower frequency, being performed at

weekly/monthly basis. Consequently, different techniques have been employed to implement task

scheduling, with tasks (a)-(c) being realized as process threads, where task (d) being realized as a

separate process, which is scheduled using the relevant operating system facilities (e.g. cron in Unix

or task scheduler in Windows).

8) The configuration parameters which provide two types of information:

a. Information about the environment that the TMS runs in; notable pieces of this type of

information are the data used for connecting to the information bus and the eVDB (endpoint

and credentials), as well as information about the trusted Cyber-Trust components, from

which messages will be received and processed through the information bus (component

names and certificates, needed for validation of the digital signatures).

b. Information about aspects of the TMS operation, which mainly pertains to parameters used

by TMS components to realise trust score computation (e.g. weights of different trust

dimensions or amortization factors – c.f. subsection 4.2), or periods at which scheduled

activities should be performed (only for period tasks realized as threads, since the related

information for the historical data purging and anonymization task is specified to the

operating system facility employed for process scheduling).

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 66

9) The POJO4 component is a collection of utility classes supporting the interaction of the TMS with the

REST adapter. POJO component elements effectively realize the view element of the Model-View-

Controller framework [69] and present REST clients with plain-data limited views of the internal Java

objects, which entail the whole information required by the model, appropriately encapsulated

through methods.

10) The ORM layer, which intervenes between the controller and the trust database, arranging for

aligning the object-oriented view at the application level with the relational view at the database

level. The ORM layer is implemented using the Hibernate Object-Relational Mapping framework (c.f.

2.6).

4 POJO is an acronym for Plain Old Java Object

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 67

5. Attack scenarios

In this section we review attack scenarios against which the TMS will be evaluated. These attack scenarios

are classified under two broad categories:

1. Attacks against the TMS trust and risk computation mechanisms, in the sense that malicious devices

attempt to lead the TMS to the formulation of inaccurate assessments. For these attacks, the

evaluation will focus on the capability of the TMS to be resilient against them and achieve to discard

falsified input and discern suspicious behaviour, and ultimately produce accurate assessments.

2. Attacks against the infrastructure protected by the Cyber-Trust architecture, i.e. devices within the

target environment (smart home, SOHO, industry and so forth). In this context, the evaluation will

assess the degree to which the trust and risk assessments offered by the TMS can support the Cyber-

Trust infrastructure and its users towards the effective mitigation of these attacks.

The two categories of attacks are described in the following subsections.

5.1 Attacks against the TMS trust and risk computation mechanisms

The attacks against the TMS trust and risk computation mechanisms include either the provision of falsified

data to the TMS or actions that are specially chosen to avoid the assignment of a low trust/high risk score.

The literature on trust management systems reports on the following attacks (c.f. section 3.2), which are

relevant to the Cyber-Trust project:

• Self-promotion attacks (SPA) [13]. The malicious node provides good recommendations for itself, in

order to increase its trust level and thus gain more access privileges.

• Bad-mouthing attacks (BMA) [13]. A malicious node provides bad recommendations for a “good”
node in order to decrease its trust value and therefore block the trusted device’s access to services
that it would legitimately be entitled to. Additionally, bad mouthing attacks can be used to flood the

Cyber-Trust system with unjustified demoted trust recommendations, with the ultimate goal of

forcing the administrators to disable the trust-based security controls, considering them as

untrustworthy.

• Ballot-stuffing attacks (BSA) [13]. A malicious node M1 attempts to boost the trust of another

malicious node M2 in order to increase the level of trust of M2 and thus allow it to gain more access

privileges.

• Opportunistic service attacks (OSA) [13]. When the trust of a malicious node starts dropping, it starts

acting as a “good” node in order to regain its trust.

• On-off attacks (OOA) [13]. A malicious node is behaving randomly, sometimes performs well

sometimes bad, so that it won’t get labelled as malicious.

• Whitewashing attacks [14]. When a malicious node has very low trust, it discards its identity by

leaving the network and re-entering it.

• Sybil-Mobile attacks [18]. A malicious node creates one or more fake identities in order to

manipulate recommendations, promote itself and gain influence over the network.

• Selective Behaviour attacks [27]. A malicious node is behaving well and bad between different

services. For example, well for simple services, but bad for more complex ones.

• Denial of service [70]. Attackers may attempt to disrupt the mechanisms underpinning the trust

system, through a denial of service attack. Agents performing such attacks typically classified as

malicious and nonrational, a fact that significantly encumbers the defence against such attacks. This

type of attack is of particular importance in the context of systems that employ trust assessments to

make timely decisions, in which case the unavailability of trust assessments, coupled with the need

to maintain normal system operation and availability of services offered by the protected

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 68

infrastructure to the benign nodes, may lead to the adoption of a loose access control policy,

permitting thus the execution of operations that would otherwise be blocked.

5.2 Attacks against the infrastructure protected by the Cyber-Trust architecture

The range of attacks that can be launched against any IoT infrastructure is vast, ranging from simple attempts

to use default access credentials or well-known weaknesses to complex multi-stage and/or multi-agent

attacks. Project deliverable D2.1 [10] has extensively surveyed the current threat landscape in the IoT

environment cataloguing more than 130 types of attacks that may take place in IoT environments. In [10],

these attacks are classified under the following ENISA categories [71].

Table 5.1. ENISA threat taxonomy branches relevant to Cyber-Trust

Type of attack

Abuse of authorizations

Abuse of Information Leakage

Compromising confidential information (data breaches)

Denial of Service

Failure or disruption of communication links

Generation and use of rogue certificates

Hoax

Identity theft (Identity fraud/account)

Intercepting compromising emissions

Interception of information

Interfering radiation

Malicious code/ software/ activity

Man-in-the-middle

Manipulation of hardware and software

Manipulation of Information

Misuse of audit tools

Misuse of information/information systems (including mobile apps)

Network reconnaissance and information gathering

Network traffic manipulation

Receiving unsolicited E-mail

Remote activity (execution)

Replay of messages

Session hijacking

Social Engineering

Targeted attacks

Unauthorized activities

Unauthorized installation of software

War driving

Out of these types of attacks, the interception of compromising emissions and the (passive) interception of

information, are performed at a very low level or in a totally passive fashion, and consequently cannot be

detected by typical security and surveillance tools. Moreover, social engineering is performed at human-to-

human communication level, hence no traces are collectable at the network or even the application layer.

All other types of attacks generate one or more observables, i.e. items that can be observed in the context

of an attack related to the specific threat. Notably, observables may occur either when an attack is underway

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 69

or after an attack has been successful: for instance, attempts to exploit the threat related to missing or weak

implementations of security mechanisms may not generate any observables, however if such a security

mechanism is violated, this will allow the attackers to penetrate one or more devices, and after the

penetration it is highly probable that observables will be generated, e.g. as traces in log files, or detection of

unauthorized programs that have been installed, or high traffic volumes owing to data exfiltration attempts,

and so forth. Table 5.2 lists the observables that can be detected for the threat types listed in Table 5.1, as

these observables are recorded in D2.1 [10] 5. According to the above, in section 6.1.2, the capability of the

TMS to intercept information regarding the presence of the observables listed in Table 5.2 and suitably

incorporate them in trust scores will be examined.

Table 5.2. Observables related to the presence of attacks/security hazards

Observables

abnormal device behaviour

abnormal/large network traffic flows and delays

abnormal physical channel behaviour

abnormal transmission patterns

activation of devices

data encrypted with invalid certificates

degradation/loss of a service

degraded network performance

detection of falsified checksums

detection of MAC/IP/identity conflicts

detection of vulnerable software

device/network instability

emails or pages with malicious code

installation/presence of unauthorized software and libraries

installation/presence of untrusted/vulnerable software and libraries

known malicious payloads

log files contain suspicious entries

malware inflows

presence of malware

resource depletion

resource measurements deviating from historical patterns

specific network packet payloads

specific traffic patterns

unencrypted network packets

unusual device/system actions and behaviour

use of weak cipher suites in network traffic

5 D2.1 lists observables in a higher level of detail, e.g. “numerous replacements of files in short time”, “abnormal
regulation of device”, “abnormal system behaviour”, “unusual behaviour of an IoT device”; in Table 5.2

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 70

6. TMS evaluation, tuning and validation

In this section, we report in the evaluation, tuning and validation of the TMS. Firstly, in subsection 6.1 we

assess the resilience of the TMS to attacks against the TMS trust and risk computation mechanisms, as well

as its ability to contribute to the mitigation of attacks against the infrastructure protected by the Cyber-Trust

architecture. Subsequently, in subsection 6.2 the effect that different parameters of the trust computation

algorithm have on the trust scores, and consequently on the level of protection that can be offered on the

basis of trust assessment is surveyed. Finally, in section 0 the TMS is validated against the relevant KPIs

defined in D8.1 [72].

6.1 TMS evaluation

6.1.1 Resilience to attacks against the TMS trust and risk computation mechanisms

In an IoT environment, malicious nodes may directly attack the trust and risk computation mechanisms,

aiming to manipulate the trust assessments produced by the TMS and therefore assume a level of control on

the operations relying on the trust/risk assessments, notably including access control and notification of

users/administrators/security officers. These attacks typically take two forms:

1. Malicious nodes generate falsified data, which they try to feed to the TMS as input; this data may

either be high-level assessments that will be fed to the TMS as peer TMS trust/risk assessments, or

lower-level information, such as notifications reporting that some device’s behaviour is found to be

malicious/benign, that its health status is promoted or demoted, or any other data that the TMS is

known to expect and process.

2. Malicious nodes adopt behaviour patterns that aim to conceal their malicious activities and therefore

increase the probability that they are assigned a higher trust level score than the one that would

otherwise be assigned to them.

TMS system proposals and reviews have reported on different types of attacks belonging to the two

abovementioned categories [13], [14], [18], [27], [70]. In the following paragraphs, we elaborate on the

resilience of the TMS algorithms presented in section 4 against each of these attacks.

6.1.1.1 Self-promotion attacks

Self-promotion attacks (SPA) [13] fall under the category of falsified data provision attacks; in such an attack

the malicious node attempts to feed the TMS with data that would boost its own trust levels, either reporting

on own benign behaviour, or providing trust assessments for itself that report high trust levels.

The TMS architecture and algorithms presented in section 4 are resilient to this type of attacks since:

1. High-level trust assessments are only sourced from TMSs that are designated as trusted, therefore

trust assessments provided in any way by arbitrary malicious devices are not accepted or processed

by the TMS. Furthermore, in case that a trusted peer TMS TTMSc is compromised and it provides

falsified trust assessments for the device Dev(TTMSc) that it runs on as an effect of this compromise,

these trust assessments will be taken into account with a demoted weight (c.f. subsection 4.2.5),

significantly limiting thus the effect that these falsified trust assessments will have on the final trust

assessment for Dev(TTMSc).

2. Lower-level information that is used for trust calculation (e.g. notifications reporting that some

device’s behaviour is found to be malicious, or regarding the device’s health/integrity status) are

received through the message bus, encapsulated in digitally signed messages, whose source,

authenticity and integrity is verified. The only acceptable sources are the authoritative components

of the Cyber-Trust platform for the generation/provision of relevant data (e.g. the iIRS, the

CyberDefense module and the Device profile repository); therefore, messages that have been

injected by some malicious node MN aiming to boost its own trust will be rejected and will not be

considered for the computation of the trust assessment for device MN.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 71

6.1.1.2 Bad-mouthing attacks

Bad-mouthing attacks (BMA) [13] fall under the category of falsified data provision attacks; in this type of

attacks, malicious node MN provides falsified trust assessments and/or low-level data that support trust

computation for a benign node BN in order to decrease the trust value of BN and therefore block BN’s access
to services or resources that it would legitimately be entitled to. Additionally, BMAs can be used to flood the

Cyber-Trust system with demoted trust recommendations for benign devices, aiming to lead the

administrators to disable the trust-based security controls, considering them as untrustworthy.

The TMS architecture and algorithms presented in section 4 are resilient to BMAs since:

1. High-level trust assessments are only sourced from TMSs that are designated as trusted, therefore

trust assessments provided in any way by arbitrary malicious devices are not accepted or processed

by the TMS. Furthermore, in case that a trusted peer TMS TTMSc is compromised and it provides low

trust assessments for some benign device BD, these trust assessments will be taken into account

with a demoted weight (c.f. subsection 4.2.5), significantly limiting thus the effect that these falsified

trust assessments will have on the final trust assessment for BD.

2. Lower-level information that is used for trust calculation (e.g. notifications reporting that some

device’s behaviour is found to be malicious, or regarding the device’s health/integrity status) are
received through the message bus, encapsulated in digitally signed messages, whose source,

authenticity and integrity is verified. The only acceptable sources are the authoritative components

of the Cyber-Trust platform for the generation/provision of relevant data (e.g. the iIRS, the

CyberDefense module and the Device profile repository); therefore, messages that have been

injected by some malicious node MN aiming to lower the level of trust for some benign device BD

will be rejected and will not be considered for the computation of the trust assessment for BD.

6.1.1.3 Ballot-stuffing attacks

Ballot-stuffing attacks (BSA) [13] fall under the category of falsified data provision attacks; in this type of

attacks, M1 attempts to boost the trust of another malicious node M2 (potentially an accomplice of M1) in

order to increase the level of trust of M2 and thus allow it to gain more access privileges.

The TMS architecture and algorithms presented in section 4 are resilient to BSAs since:

1. High-level trust assessments are only sourced from TMSs that are designated as trusted, therefore

trust assessments provided in any way by arbitrary malicious devices are not accepted or processed

by the TMS. Furthermore, in case that a trusted peer TMS TTMSc is compromised and it provides

falsified elevated trust assessments for some malicious node M2, these trust assessments will be

taken into account with a demoted weight (c.f. subsection 4.2.5), significantly limiting thus the effect

that these falsified trust assessments will have on the final trust assessment for M2.

2. Lower-level information that is used for trust calculation (e.g. notifications reporting that some

device’s behaviour is found to be malicious, or regarding the device’s health/integrity status) are
received through the message bus, encapsulated in digitally signed messages, whose source,

authenticity and integrity is verified. The only acceptable sources are the authoritative components

of the Cyber-Trust platform for the generation/provision of relevant data (e.g. the iIRS, the

CyberDefense module and the Device profile repository); therefore, messages that have been

injected by some malicious node M1 aiming to promote the level of trust for some malicious device

M2 will be rejected and will not be considered for the computation of the trust assessment for M2.

6.1.1.4 Opportunistic service attacks

Opportunistic service attacks (OSA) [13] fall in the category of behaviour pattern adoption, aiming to the

deceive the TMS into the calculation of higher trust levels. In the context of an OSA attack, malicious nodes

observe their trust assessments and, when that starts dropping, they adopt a benign node behaviour so as

to reinstate their trust to a higher level.

The TMS architecture and algorithms can successfully mitigate opportunistic service attacks since, firstly,

malicious nodes are not able to observe their trust assessments. Furthermore, if a malicious node is detected

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 72

to launch attacks, the TMS demotes its behaviour-based trust level to zero, and this trust level is not

reinstated, until the system administrator manually declares that the node health has been restored.

Obviously, the system administrator will not take such action for a malicious node. Should the node exhibit

abnormal activities, such as excessively high network traffic its trust level is again demoted. While the

anomaly-based demotion is temporary (as noted in subsection 4.2.2, the BBTN(D) score is replenished at

some rate R), an appropriate adjustment of the trust demotion and trust replenishment rates will maintain

the behaviour-based score dimension of malicious nodes at low levels. Notably any mixture of detected

attacks and detected anomalies will demote the behaviour-based trust to zero, with no replenishment

provisions.

6.1.1.5 On-off attacks

On-off attacks (OOA) [13] fall in the category of behaviour pattern adoption, aiming to the deceive the TMS

into the calculation of higher trust levels. In the context of such an attack, a malicious node is behaving

randomly, switching between benign and malicious behaviours, aiming to avoid the assignment of low trust

level.

The TMS architecture and algorithms can successfully mitigate on-off attacks since, if a malicious node is

detected to launch attacks, the TMS demotes its behaviour-based trust level to zero, and this trust level is

not reinstated, until the system administrator manually declares that the node health has been restored.

Similarly to the case of OSA (c.f. 6.1.1.4), the system administrator is not expected to take such action for a

malicious node. If the malicious node refrains from committing known attacks, but rather it simply creates

excessive load in the network, this will be flagged as an anomaly and will lead to the demotion of the node’s
trust score. Again, demotion levels in the case of anomalies and anomaly-based score replenishment may be

appropriately tuned so that behaviour-based scores remain at low levels.

6.1.1.6 Whitewashing attacks

Whitewashing attacks [14] fall in the category of behaviour pattern adoption, aiming to deceive the TMS into

the calculation of higher trust levels. In the context of these attacks, a malicious node realizing that its trust

value has dropped to a very low-level attempts to increase it by assuming a new identity; this is typically

accomplished by leaving the network and re-joining it.

To tackle whitewashing attacks, the TMS relies on the information obtained from other components of the

Cyber-Trust architecture. Firstly, for devices that are registered to the Cyber-trust platform, a strong identity

mechanism is present, and therefore the device identity is maintained, preventing thus the execution of

whitewashing attacks. This however mainly applies to the case of registered devices that are compromised,

since it is possible that a registered Cyber-Trust platform user takes actions to de-register a device from the

Cyber-Trust platform and register it back again, in which case a new identity is indeed assumed. Nevertheless,

the fact that the device will be correlated to the physical person performing these purposeful activities

supports accountability, and this is expected to deter users from performing such actions.

For devices that are not registered to the Cyber-Trust platform, a number of measures can be taken to protect

the infrastructure against whitewashing attacks. Firstly, in environments with high security requirements, it

is possible to assign a very low trust level to devices unknown to the Cyber-Trust platform, considerably

limiting thus the extent of activities that are allowed for these devices within the protected infrastructure.

This can be performed by configuring the user-to-user trust relationship computation procedure to use a very

low default trust moderation value for unknown devices, when no known user-to-user relationship exists (c.f.

subsection 4.2.6, parameter UTdefault.unregistered). Secondly, measures can be taken by Cyber-Trust platform

modules to detect cases that some device is re-joining the platform; indicative such measures are the

comparison of the device’s MAC address and/or CPE attribute with a list of recently MAC address/CPE

attribute values that recently appeared within the protected infrastructure. A positive result provides

indications that the device has departed from the network and re-joined it, and therefore suitable

correlations, possibly tagged with a confidence degree, can be established.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 73

6.1.1.7 Sybil-Mobile attacks

Sybil-Mobile attacks (SMA) [18] fall under the category of falsified data provision attacks. In the context of

SMAs, a malicious node MN creates a number of fake identities FI1, FI2, …, FIn; then, each of the fake identities

attempts to provides false data to the TMS, aiming and deceive it into the calculation of a high trust score for

MN, allowing it thus to gain more access privileges..

The TMS architecture and algorithms presented in section 4 are resilient to SMAs since:

1. High-level trust assessments are only sourced from TMSs that are designated as trusted, therefore

trust assessments provided in any way by any of the fake identities FI1, FI2, …, FIn are not accepted or

processed by the TMS. Furthermore, in case that a trusted peer TMS TTMSc is compromised, it can

only provide a single recommendation for the device it is hosted on, and this is resolved as described

in the case of self-promotion attacks, through a demoted value of the weight that such assessments

are considered (c.f. subsection 6.1.1.1).

2. Lower-level information that is used for trust calculation (e.g. notifications reporting that some

device’s behaviour is found to be malicious, or regarding the device’s health/integrity status) are
received through the message bus, encapsulated in digitally signed messages, whose source,

authenticity and integrity is verified. The only acceptable sources are the authoritative components

of the Cyber-Trust platform for the generation/provision of relevant data (e.g. the iIRS, the

CyberDefense module and the Device profile repository); therefore, messages that have been

injected by any of the fake identities FI1, FI2, …, FIn are rejected and are not considered for the

computation of the trust assessment for MN.

6.1.1.8 Selective Behaviour attacks

Selective Behaviour attacks [14] fall in the category of behaviour pattern adoption, aiming to the deceive the

TMS into the calculation of higher trust levels. In the context of selective behaviour attacks, a malicious node

MN adopts different behaviours towards different services/nodes, aiming to conceal its malicious behaviour

towards selected services/nodes under a higher volume of good behaviour indications, stemming from its

interactions with other services/nodes.

The TMS architecture and algorithms presented in section 4 are resilient to selective behaviour attacks since:

1. If MN launches known attacks against some service/node, when a single attack is detected, its

behaviour-based trust will drop to zero, and benign behaviours towards other services/nodes will

not affect in any way the level of trust computed for MN. Notably, in such cases, MN’s behaviour-

based trust level will only be reinstated if the system administrator manually takes action to state

that MN’s health has been restored, and such actions are not considered probable.

2. If MN uses high volumes of traffic towards certain services/nodes, e.g. in the context of denial of

service attacks, while it creates low-volume traffic flows against other services/nodes, the

CyberDefense modules of the Cyber-Trust platform will still flag the anomalous behaviour, since (a)

the volume of data emanating from the device will still be high and (b) anomaly-based analysis may

consider device-to-device data volume flow granularity, rather than collective device-to-network

data volume flows. Once the anomalous behaviour is flagged, MN’s behaviour-based trust will be

demoted, and the relevant Cyber-Trust modules will be notified accordingly to take prominent

actions against MN and limit its access to the network and services.

6.1.1.9 Denial of service

Denial of service attacks [70], in this context, refer to the attempts made by attackers to disrupt the operation

of the TMS by typically creating a high volume of requests to the TMS, aiming to deplete its resources.

As noted in [70], the predominant defence measure against denial of service attacks is the adoption of

distributed calculation and dissemination algorithms, which are less vulnerable to attacks if enough

redundancy is employed, such that misbehaviour or loss of one or a few TMS instances will not affect the

operation of the trust management system as a whole. The Cyber-Trust TMS adopts a distributed, peer-to-

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 74

peer architecture for trust computation and dissemination (c.f. subsection 4.1), and therefore provides an

elevated level of resilience against denial of service attacks.

6.1.2 Mitigation of attacks against the infrastructure protected by the Cyber-Trust architecture

In this subsection, we review how the TMS may contribute to the provision of an elevated level of security

for the Cyber-Trust protected infrastructure. As discussed in subsection 5.2, the analysis of the defence

potential is based on the degree to which the TMS utilises the information produced by other Cyber-Trust

platform components (notably the iIRS, the CyberDefense, the device registry and the eVDB modules), to

compute comprehensive trust and risk score levels that will be then used for the determination and

enactment of appropriate defence measures. Taking these into account, it is clear that the accuracy,

timeliness and quality of trust assessments produced by the TMS is highly dependent on the accuracy,

comprehensiveness and timeliness with which the aforementioned Cyber-Trust platform components

process data and produce notifications, to be intercepted and further processed by the TMS. In the remainder

of this section, we will only focus on the utilization of the data/information by the TMS and the effect on the

trust score, and not on the accuracy, comprehensiveness and timeliness properties of this information.

Table 6.1 presents details on the mapping between attack/security hazard observables, the relevant

information produced by other CyberTrust components and utilised by the TMS, and the effect of this

information on the scores computed by the TMS.

Table 6.1. Attack/security hazard observables, relevant information utilised by the TMS and its effect on the scores

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

1. abnormal device

behaviour

Deviations from nominal

device behaviour

The TMS will reduce the behaviour-based aspect of the

device’s trust; the higher the deviation, the bigger the
reduction.

2. abnormal/large

network traffic flows

and delays

Deviations from the

nominal metrics of

network flows

The TMS will extract from the notifications it receives

the sources of increased network flows and demote

their trust level. Notably, large information flow

volumes may be flagged for benign devices that are the

targets of DoS/DDoS attacks; again, in this case, the

irregularity will be flagged for relevant modules to take

defence action and for system administrators/security

officers to attend to the issue.

3. abnormal physical

channel behaviour

Deviations from the

nominal metrics of

network flows

The current ingress information flows of the TMS do

not include some information about the behaviour of

the physical channel; however, irregularities on the

physical layer of communication always have an effect

on all higher layers, hence deviations from the nominal

metrics of network flows for devices operating on top

of the affected physical channel will be flagged. The

TMS will exploit this information to raise alerts on the

trust level of affected devices; these alerts, coupled

with the fact that all affected devices will be supported

by the same communication medium, will allow

system administrators/security officers to infer the

root cause of the issue.

4. abnormal

transmission

patterns

Attacks against devices Abnormal transmission patterns are typically

associated with known attacks, such as the selective

forwarding [73], the SYN flood attack [74] and the

Slowloris attack [75]. Once these attacks are identified,

the TMS will utilize the information to decrease the

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 75

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

attacker device’s behaviour-based score to zero,

notifying accordingly the Cyber-Trust platform

components that are responsible for triggering the

enactment of defence measures.

5. activation of devices Deviations from nominal

device behaviour;

Presence of unauthorized

devices

Activation of devices is related mainly to either the

unanticipated operation of devices at time points not

compliant to their schedule or specifications [76] or

the presence of unknown devices within the network

perimeter. In the former case, the TMS will exploit the

information received about the abnormal behaviour of

these devices to demote their trust; in the latter case,

the assignment of low trust levels to unknown

devices/devices with no known owner is bound to

provide a high level of protection against them.

6. data encrypted with

invalid certificates

Device vulnerability

flagging or attacks against

devices

Data may be encrypted with invalid certificates for

different of reasons: firstly, a legitimate certificate may

expire and therefore become invalidated; secondly,

some malicious nodes may attempt to forge

certificates, in order to deceive other devices/users

into believing that they actually possess different

identities.

The first case resolves to a weakness or

misconfiguration; when such issues are identified and

reported by relevant Cyber-Trust components, the

TMS will appropriately demote the status-based trust.

On the other hand, the second case resolves to a

deliberate attack, hence the flagging and reporting of

such cases will trigger the demotion of the behaviour-

based score of the device to zero.

7. degradation/loss of a

service or system

Deviations from nominal

device behaviour

When a service is lost, or its quality is degraded, the

behaviour of the relevant device will deviate from its

nominal behaviour, exhibiting ping packet loss, high

CPU loads, increased response time etc. Such

observables are also exploited by infrastructure

monitoring systems (e.g. [60]). Correspondingly, when

such deviations are detected and reported by

appropriate Cyber-Trust components, the TMS will

degrade the corresponding device’s trust level,
increase the associated risk and publish notifications

on these changes. The notifications will be intercepted

by Cyber-Trust defence and awareness components,

which will trigger appropriate actions.

8. degraded network

performance

Deviations from the

nominal metrics of

network flows

Degraded network performance is owing either to

packet flooding, noise/irregularities on the physical

channel layer or hardware faults. Packet flooding will

be handled similarly to case (2) “abnormal/large

network traffic flows and delays” above. Hardware
faults are indistinguishable from noise/irregularities on

the physical channel layer; both of these cases are

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 76

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

handled as described in case (3) “abnormal physical

channel behaviour” presented above.

9. detection of falsified

checksums

Attacks against devices;

device compromises

Falsified checksums are used by malicious nodes either

(a) to impersonate other devices or (b) to conceal

device compromises. Case (a) (impersonation)

constitutes an attack against the nodes/infrastructure,

while case (b) (concealment of compromises)

corresponds to demotion of device integrity. When the

relevant cases are detected and reported by

appropriate Cyber-Trust components, the TMS will

reduce either the behaviour-based trust score (case a)

or the status-based trust score (case b).

10. detection of

MAC/IP/identity

conflicts

Misconfigurations or

attacks against devices

IP conflicts may correspond to either

misconfigurations of the network infrastructure or

attempts of a malicious node to impersonate other

devices; MAC and identity conflicts are typically

correlated to attacks, due to the considerably limited

probability that such conflicts occur coincidentally.

Consequently, when MAC and identity conflicts are

reported, the TMS will degrade the behaviour-based

trust of the offending device. In the case of IP conflicts,

the action of the TMS will depend on whether the

reporting Cyber-Trust platform module will flag the

conflict as a misconfiguration or as an attack: in the

former case, the status-based trust score of the

offending device will be demoted, while in the latter

case the behaviour-based trust score of the offending

device will be set to zero.

11. detection of

vulnerable software

Device vulnerability

flagging

Data vulnerabilities are detected by the relevant

Cyber-Trust modules and reported; upon reception of

the relevant information, the TMS demotes the trust

level of the device, as detailed in subsection 4.2.1.

12. device/network

instability

Device deviation from

nominal metrics

Device and network instability may be owing to service

misconfigurations, transient or periodic physical

channel noise, IP/MAC conflicts and so forth. These

phenomena are captured and flagged by network

monitoring tools as flapping hosts/services (e.g. [60]).

Correspondingly, when such deviations are detected

and reported by appropriate Cyber-Trust components,

the TMS will degrade the corresponding devices’ trust

level, increase the associated risk and publish

notifications on these changes. The notifications will

be intercepted by Cyber-Trust defence and awareness

components, which will trigger appropriate actions.

13. emails or pages with

malicious code

Attacks against devices Both cases constitute malicious activities, with the

intent to cause harm to devices. When an email/web

page containing malicious code is identified, the

corresponding server’s behaviour-based trust score

will be demoted to zero. It is noted here however that

the response to such cases should be more elaborate

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 77

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

than simply blocking access to the respective server,

since blocking e.g. access to the mail server will result

in loss of ability to fetch additional e-mails; the same

will be true for the cases that the user users webmail

software to access his/her emails, and some e-mail is

found to contain malicious code. Special handling of

such servers can be achieved by setting an explicit trust

level for the them (c.f. subsection 2.5.1).

14. installation/presence

of unauthorized

software and

libraries

Device vulnerability

flagging

The installation or presence of unauthorized software

and libraries will be flagged by Cyber-Trust platform

components monitoring/attesting device health as a

vulnerability; the TMS will therefore decrease the

status-based trust of the device.

15. installation/presence

of

untrusted/vulnerable

software and

libraries

Device vulnerability

flagging

The installation or presence of unauthorized software

and libraries will be flagged by Cyber-Trust platform

components monitoring/attesting device health as a

vulnerability; the TMS will therefore decrease the

status-based trust of the device.

16. known malicious

payloads

Attacks against devices When the CyberDefense modules detect and flag

attacks against devices, the TMS will demote the

behaviour-based trust of the originating devices to

zero. Note that the trust level of the device in such

cases is not automatically replenished and the system

administrator/security officer should explicitly set that

the corresponding device’s health has been restored
(c.f. subsection 4.2.2)

17. log files contain

suspicious entries

Attacks against devices;

misconfigurations; device

vulnerability flagging;

presence of malware

Suspicious entries in log files may stem from many

different reasons, with the most prevalent ones being

attacks against the device (e.g. fail2ban entries [77])

and misconfigurations [78]. If the device runs

automated vulnerability scanning software (e.g.

password strength test [79]) or malware detection

software, log file entries may signify the existence of

vulnerabilities or presence of malware. In general, all

these incidents may be reported by agents running on

the device.

Once such reports have been received by the TMS, the

corresponding aspects of the device trust scores will be

demoted as follows:

• If attacks against devices are detected, the

attacking device’s behaviour-based trust score is

demoted to zero (c.f. subsection 4.2.2).

• In the event of detection of misconfigurations,

device vulnerabilities or malware, the status-

based trust level of the device is demoted (c.f.

subsection 4.2.1).

18. malware inflows Attacks against devices Malware inflows constitute attempts to compromise

devices within the protected network scope. Once

these attacks are identified, the TMS will utilize the

information to decrease the attacker device’s

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 78

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

behaviour-based score to zero, notifying accordingly

the Cyber-Trust platform components that are

responsible for triggering the enactment of defence

measures.

19. presence of malware Device vulnerability

flagging

The presence of malware will be flagged by Cyber-

Trust platform components monitoring/attesting

device health as a vulnerability; the TMS will therefore

decrease the status-based trust of the device (c.f.

subsection 4.2.1).

20. resource depletion Deviations from the

nominal device metrics

Resource depletion reports indicate that the CPU, disk

channels or memory of the device are saturated; these

events are identified and reported as deviations from

the nominal device metrics, where typical resource

device usage varies between a nominal minimum and

a nominal maximum. Upon reception of such reports,

the TMS will demote the behaviour-based trust of the

device (c.f. subsection 4.2.2). The amount of trust

demotion is reciprocal to the magnitude of the

deviation.

21. resource

measurements

deviating from

historical patterns

Deviations from nominal

device behaviour

When such deviations are flagged, The TMS will reduce

the behaviour-based aspect of the corresponding

device’s trust; the higher the deviation, the bigger the

reduction.

22. specific network

packet payloads

Attacks against devices Detection of specific network packet payloads typically

corresponds to positives in signature-based intrusion

detection [80], [81], i.e. malicious activities against

devices. When the CyberDefense modules detect and

flag such attacks, the TMS will demote the behaviour-

based trust of the originating devices to zero. Note that

the trust level of the device in such cases is not

automatically replenished and the system

administrator/security officer should explicitly set that

the corresponding device’s health has been restored
(c.f. subsection 4.2.2)

23. specific traffic

patterns

Attacks against devices Specific traffic patterns are typically associated with

known attacks, such as the selective forwarding [73],

the SYN flood attack [74] and the Slowloris attack [75].

Once these attacks are identified, the TMS will utilize

the information to decrease the attacker device’s
behaviour-based score to zero, notifying accordingly

the Cyber-Trust platform components that are

responsible for triggering the enactment of defence

measures.

24. unencrypted

network packets

Device vulnerability

flagging

Use of weak cipher suites signify weakness of the

corresponding devices (actually, of the services run on

the devices); when such issues are identified and

reported by relevant Cyber-Trust components, the

TMS will appropriately demote the status-based trust.

25. unusual

device/system

Deviations from nominal

device behaviour

The detection of unusual device/system actions and

behaviour may be rooted to a number of causes,

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 79

Attack/security

hazard observables

Relevant information

utilized by the TMS

Effect of this information on the scores

actions and

behaviour

including the following: (a) the device has been

compromised, (b) the device is under attack and (c) the

device is misconfigured; however, no specific root

causes have been traced, and reports remain at a

generic “unusual behaviour” level, in the form of
deviations from nominal behaviour (e.g. high number

of processes; high network load; flapping services [60];

and so forth). As a response to such reports, the TMS

will decrease the behaviour-based trust score of the

device.

26. use of weak cipher

suites in network

traffic

Device vulnerability

flagging

Use of weak cipher suites signify weakness of the

corresponding devices; when such issues are identified

and reported by relevant Cyber-Trust components, the

TMS will appropriately demote the status-based trust.

6.2 TMS parameter tuning and performance

In this subsection we initially review the different parameters used in the trust computation algorithm and

the selection of their values, while subsequently, we perform a performance analysis on the TMS

implementation.

6.2.1 TMS parameter setting

The TMS trust computation algorithm described in section 4.2 entails the use of a number of parameters,

regulating various aspects of trust score computation as follows:

• Compliance-based trust score restoration rate (TSRRcompliance),

• Nominal behaviour-based trust score restoration rate (TSRRnominality),

• Status-, behaviour- and associated risk-based trust score weights (ws, wb, wa),

• Minimum local weight (LWmin) and peer trust threshold (PTthreshold),

• Default user trust value for registered users (UTdefault.registered),

• Default user trust value for unregistered users (UTdefault.unregistered).

In this subsection we survey the effect of these parameters in the overall trust computation. Since different

environments have different security requirements, aspects of the environment in which the Cyber-Trust

solution will be deployed are also taken into account.

6.2.1.1 Setting the compliance-based trust score restoration rate parameter

The compliance-based trust score restoration rate parameter, denoted as TSRRcompliance, regulates the rate at

which the compliance-based aspect of the trust score of some device is restored after the detection of non-

compliant traffic transmitted from the device. Recall from section 4.2.2 that when non-compliant traffic is

detected, the compliance-based trust score is set to zero, which correspondingly sets the overall behaviour-

based trust score to zero (c.f. equation (5)), and this is further propagated to the overall trust score (c.f.

section 4.2.4).

While in an ideal setting no non-compliant traffic should be detected from any benign device, in a real-world

setting this may not hold for a number of reasons:

1. Firstly, non-malicious/coincidental human activities may lead to the generation of non-compliant

traffic. A characteristic case is that of a user/system administrator that experiments with commands

on a device, with one or more command leading to the generation of non-compliant traffic. Notably,

this aspect is related to the level of computer skills possessed by the infrastructure owner: naïve

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 80

users are not bound to engage in such activities, while technically-aware users are more bound to

seek experimentation.

2. Secondly, as noted in section 4.2.2, device compliance is expected to be mainly measured according

to the specifications of MUD files [61], however, for most device types, such files are not provided

by manufacturers. This may lead infrastructure owners or maintainers to craft their own MUD files,

which are bound to be imperfect and thus cause false positives in the process of non-compliant

behaviour flagging.

3. Thirdly, MUD files or other compliance specification means should be tailored to the particular

installation. This includes allowed devices to communicate with (e.g. a wireless surveillance camera

in a smart home should communicate its signals to the security software, and this is bound to be

located in a different address in different installations); gateways for communicating to the external

world (e.g. for fetching updates); proxies that may operate within the infrastructure, through which

communication should mandatorily directed; and so forth.

Considering the specificities of a particular installation, an acceptable rate/frequency of non-compliant traffic

should be sustained; this is accommodated through the replenishing of the compliance-based trust score,

allowing occasional non-compliant functionalities to be “forgotten”, however penalizing cases where non-

compliant behaviours exceed this acceptable rate/frequency of non-compliant traffic. As noted above, the

parameter TSRRcompliance regulates the compliance-based trust score replenishment rate.

Figure 6.1 presents a trade-off between blocking time of benign devices and periods at which malicious

devices are granted access. In Figure 6.1(a) we can observe that setting a relatively low value for TSRRcompliance

ensures that malicious devices (which exhibit non-compliant behaviours at a high frequency) always stay

below a threshold above which only benign devices should be placed6; This is due to the fact that they

frequently make non-compliant actions and their compliance-based trust is reset to zero at each occurrence

of such actions. On the other hand, if a benign device happens to exhibit non-compliant traffic, the time tbb

that is needed until its compliance-based trust is restored above the acceptable level is prolonged.

Conversely, if TSRRcompliance is set to a high value (Figure 6.1(b)), the trust restoration curve is steeper,

ascertaining that benign devices quickly recover to the acceptable trust level after an accidental occurrence

of a non-compliant action; however, malicious (compromised) devices also replenish their trust more quickly,

hence they gain the opportunity to act as trusted (or partially trusted) devices for a period of time tma which

may constitute a window of opportunity for conducting attacks.

(a)

(b)

Figure 6.1. Trade-off between blocking time of benign devices and periods at which malicious devices are granted

access: (a) low compliance-based trust level restoration rate (b) high compliance-based trust level restoration rate

Taking the above into account, the following cases for setting the TSRRcompliance trust restoration rate

parameter:

6 The “acceptable level of trust” used in Figure 6.1 is indicative only and does not imply that this value should be used

in some setting.

0

0.2

0.4

0.6

0.8

1

co
m

p
li

a
n

ce
-b

a
se

d
 t

ru
st

time

malicious device benign device

acceptable trust level

for bening devices
tbb

time points where non-

compliant activities occurred

0

0.2

0.4

0.6

0.8

1

co
m

p
li

a
n

ce
-b

a
se

d
 t

ru
st

time

malicious device benign device

acceptable trust level

for bening devicestbb
tma

time points where non-

compliant activities occurred

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 81

• Within smart homes of naïve users, where users do not engage in experimentation and

configurations are fairly standard, and therefore the probability that benign devices perform non-

compliant actions is small, TSRRcompliance can be set to a small value (e.g. 0.05 / 1h), or even to a close-

to-zero value.

• Within the smart homes of technology-aware users, where configurations may not be standard or

users may engage in experimentation, leading thus to a higher probability that benign devices

perform non-compliant actions, TSRRcompliance can be set to a higher value (e.g. 0.15 / 1h).

• In industrial settings, where no malicious activities can be tolerated, configurations and compliance

tests are expected to have been crafted by experts and system administrators are bound to intervene

and explicitly set trust levels through APIs/UIs (c.f. subsection 2.5.1), TSRRcompliance can be set to a zero

or near-zero value.

Notably, when infrastructure owners/maintainers discover that some instances of non-compliance are owing

to MUD file imperfections or particularities of the installations, the compliance rules may be updated

accordingly. Such compliance rules corrections can be coupled with a decrease in the value of TSRRcompliance.

6.2.1.2 Nominal behaviour-based trust score restoration rate

The nominal behaviour-based trust score restoration rate parameter, denoted as TSRRnominality, regulates the

rate at which the nominal behaviour-based aspect of the trust score of some device is restored after the

detection of device behaviour that deviates from nominal metrics; nominal metrics are typically compiled by

observing historical data of the device, and may pertain to CPU load, memory usage, network traffic or any

other measurable aspect of the device behaviour. Recall from section 4.2.2 that when deviations from

nominal behaviour are detected, the nominal behaviour-based trust score of the device is reduced by a factor

corresponding to the degree of deviation, i.e. high deviations result to reductions of a higher magnitude (c.f.

equation (4)). The reduction in the nominal behaviour-based trust score is reflected in the overall behaviour-

based trust score to zero (c.f. equation (5)), and this is further propagated to the overall trust score (c.f.

section 4.2.4).

In an ideal setting, the nominal behaviour metrics would always be observed by healthy devices and all

deviations from these nominal metrics would signify some kind of compromise or otherwise

suspicious/malicious activity of behalf of the device. However, deviations from nominal behaviour metrics

may be circumstantial since:

• Certain legitimate administrative operations performed on a device generate metrics that are

deviant from typical behaviour; these operations include backups on remote devices (elevated disk

and network activities), full device scans for viruses and malware (increased disk I/O and CPU load),

firmware/operating system/software updates (high CPU, disk and network load) etc.

• Legitimate programs or services running on the device may hang, causing high disk, CPU, network or

memory resource consumption.

• Some tasks that users run occasionally, e.g. video editing, may case elevated use of resources which

can be deemed abnormal, as compared to usual metrics. This aspect depends highly on the type of

applications employed by users.

Similarly to the case of non-compliant behaviour detection, a level of deviation from nominal behaviour

should be tolerated in an installation, to accommodate the exceptions listed above. This is realized through

the reinstatement of the device’s nominality-based trust, which allows for occasional deviations from

nominal metrics to be “forgotten”, however penalizing cases where deviant behaviours exceed this
acceptable level of deviations. As stated above, parameter moderating the restoration level of the

nominality-based trust score is denoted as TSRRnominality.

Analogously to the observations made in subsection 6.2.1.1 for the setting of parameter TSRRcompliance, the

setting of the TSRRnominality parameter entails a trade-off between the time tbb that a benign device which

coincidentally exhibited deviant behaviour will remain below the acceptable trust level for benign devices,

and the time tma that malicious (compromised) devices exhibiting deviant behaviour will remain above that

level, offering a window of opportunity for more efficient attacks. However, recall that the reduction made

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 82

to a deviant device’s nominality-based trust level is analogous to the magnitude deviation, hence in the

following analysis we elaborate on two cases:

1. In Figure 6.2 the evolution of devices’ nominality-based trust scores in cases where deviations of high

magnitudes occur is depicted. In Figure 6.2(a) we observe that the nominality-based trust scores of

both benign and malicious devices drops immediately under the acceptable trust level for benign

devices when a deviation of a large magnitude occurs. Subsequently, as the benign device does not

exhibit any more deviations its trust level is restored at a low rate (i.e. TSRRnominality is set to a low

value), and after a prolonged time interval tbb it surpasses the acceptable trust level for benign

devices. Conversely, the malicious device will exhibit again deviations of low magnitudes and, with

the exception of a small peak, will remain constantly under the .acceptable trust level for benign

devices.

Figure 6.2(b) we can observe that when TSRRnominality is set to a high value, the benign device’s
nominality-based trust score is restored above the acceptable trust level for benign devices more

quickly, however the malicious devices again gain windows of opportunity for launching (more

successful) attacks.

(a)

(b)

Figure 6.2. Trade-off between blocking time of benign devices and periods at which malicious devices are granted

access when deviations of high magnitudes occur: (a) low nominality-based trust level restoration rate (b) high

nominality-based trust level restoration rate

2. In Figure 6.3 we can observer the evolution of devices’ nominality-based trust scores in cases where

deviations of low magnitudes take place. In Figure 6.3(a) a low value is used for TSRRnominality and,

according to this setting, the benign device’s nominality-based trust score is always over the

acceptable trust level for benign devices, however the time needed to reach its maximum value is

prolonged; on the other hand, the malicious device’s nominality-based trust score is gradually

decreased, since deviations from nominal metrics are repeatedly flagged and penalized, until it sinks

below the acceptable trust level for benign devices. In Figure 6.3(a) we observe the analogous

behaviour for cases where TSRRnominality is set to a high value: here, the benign device’s trust score is
restored more quickly to its maximum level, however the time that will be needed for the malicious

device to attain a trust score less than the acceptable trust level for benign devices will be

considerably increased. Note that the malicious device’s trust level will drop under the acceptable
trust level for benign devices, only if the trust reduction rate is higher than the value of TSRRnominality.

0

0.2

0.4

0.6

0.8

1

n
o

m
in

a
li

ty
-b

a
se

d
 t

ru
st

time

malicious device benign device

acceptable trust level

for bening devices
tbb

time points where deviant

behaviours were observed

0

0.2

0.4

0.6

0.8

1

n
o

m
in

a
li

ty
-b

a
se

d
tr

u
st

time

malicious device benign device

acceptable trust

level for bening
tb tm

time points where deviant

behaviours were observed

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 83

(a)

(b)

Figure 6.3. Trade-off between blocking time of benign devices and periods at which malicious devices are granted

access when deviations of low magnitudes occur: (a) low nominality-based trust level restoration rate (b) high

nominality-based trust level restoration rate

Taking the above into account, the following cases for setting the TSRRnominality trust restoration rate

parameter:

• Within smart homes of naïve users, where the probability of remote operations other than streaming

is small (backups are mostly performed in USB-attached disks in these cases), no significant

deviations from nominal network metrics are expected hence the TSRRnominality parameter may be set

to a small value. Deviations from other metrics (CPU, disk I/O) can be penalized less severely to

account for operations like virus scans or updates; this can be accommodated either at the deviation

detection level (by adjusting the magnitude of the reported deviation) or at the TMS level (by

adjusting the deduction according to the type of deviation reported).

• Within smart homes of advanced users, where some remote operations could be performed,

TSRRnominality values could be set to a higher level. Alternatively, a level of awareness for users could

be sought for, so as to cater for explicitly setting trust levels of devices involved in operations that

are bound to cause deviant behaviour, for the time frame of these operations. This can be

accommodated by specialized user-friendly programs, similarly to the case of port knocking in

networks [82].

• In industrial settings, where no deviant activities can be tolerated, system administrators are bound

to intervene and explicitly set trust levels through APIs/UIs (c.f. subsection 2.5.1) or user-friendly

programs, TSRRnominality can be set to a zero or near-zero value.

6.2.1.3 Status-, behaviour- and associated risk-based trust score weights

In the Cyber-Trust TMS model, trust is composed of three separate dimensions, namely status, behaviour

and associated risk. The scores for the three distinct dimensions are calculated separately (c.f. subsections

4.2.1-4.2.3) and then synthesized into a comprehensive score as described in subsection 4.2.4, using a simple

additive weighting method [66]. The simple additive weighting method employs one weight per dimension

(ws, wb and wa, respectively), under the restrictions that:

0 ≤ ws ≤ 1

0 ≤ wb ≤ 1

0 ≤ wa ≤ 1

ws + wb + wa =1

(23)

As noted in subsection 4.2.4, the behaviour trust score is based on evidence on the activity of the device; on

the other hand, the presence of vulnerabilities on a device, while undesirable, may or may not lead to its

compromise (depending on a number of factors such as the reachability of the device or the level of the

attackers’ skills and the perceived value of the device for attackers); even in the case that status-based health

0

0.2

0.4

0.6

0.8

1

n
o

m
in

a
li

ty
-b

a
se

d
 t

ru
st

time

malicious device benign device

acceptable trust level

for bening devices

time points where deviant

behaviours were observed

0

0.2

0.4

0.6

0.8

1

n
o

m
in

a
li

ty
-b

a
se

d
tr

u
st

time

malicious device benign device

acceptable trust

level for bening

time points where deviant

behaviours were observed

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 84

is demoted due a factual compromise (e.g. a firmware hack), some compromises are not used for further

exploitation but serve other purposes (challenge, reputation, skill development etc. [83]). Consequently, we

expect that wb > ws. Similarly, the associated risk dimension pertains to events that may occur and their

impact, and correspondingly wb > wa. Finally, as noted above, status-based trust may be partially based on

factual compromises, while the associated risk dimension pertains only to potential events; under the same

rationale, we set ws > wa and, overall, wb > ws > wa.

Furthermore, we consider the probability that compromises are actually exploited for further attacks or

cause of damage, as contrasted to the case of serving other purposes such as challenge and reputation. In

contexts of industrial, financial, governmental or similar environments, where the infrastructure is well

protected and resources can be allocated for the discovery and punishment of intruders, increasing thus the

risk level of prospective intruders, compromises and related attacks are conducted by agents that actually

intend to exploit breaches and cause harm; in such a setting, a demoted health status should be taken into

account more strongly, and therefore we use a weight setting {ws=0.25, wb=0.65, wa=0.1}. In smart home

environments or other infrastructures where the probability of attacks not aiming to further damage or

exploitations is higher, smaller values for the status-based weight can be considered, e.g. a prominent setting

may be {ws=0.15, wb=0.75, wa=0.1}.

6.2.1.4 Minimum local weight (LWmin) and peer trust threshold (PTthreshold)

Bao and Chen [16] in their model conclude that the direct experience of the node (i.e. the local weight) should

prevail against the indirect experiences collected as recommendations from other peers (i.e. the peer’s trust
assessments). The ratio of the indirect experiences’ weight to the weight of the direct experiences ranges

from 0 to 0.4, depending on the trustworthiness of the recommenders; equivalently, the local weight ranges

from to 0.714. In the implementation of the Cyber-Trust TMS we adopt this setting, setting the minimum

local weight LWmin to 70% (0.7). This is also affirmed by Chen et al. [20], where in the case that peers from

whom recommendations are received not totally trusted, the local trust level converges to values μ > 0.7.

Regarding the setting of the peer trust threshold PTthreshold, we opt for the value of 1.0, to match the trust

level of the local TMS’s trust to its own assessment.

6.2.1.5 Default user trust value for unregistered users

Unregistered users may be assigned different trust levels, depending on the environment in which the Cyber-

Trust solution is deployed and the degree of tolerance of unregistered users/devices in this environment. In

particular:

• In smart home environments, it is possible that the smart home owner may want to share some

resources with users that are not registered with the Cyber-Trust platform, e.g. allow them to print

to the smart home printers or stream/upload photos and videos to the smart TV. In such

environments, in order to perform such sharing actions, the default trust value for unknown users

should be set above the threshold that allows these actions, but below the threshold that warrants

access permissions to devices that the owner wants to keep private, or shared only under more strict

safeguards. The actual value of UTdefault.unregistered will thus be set in accordance to the access and

countermeasure policies defined in the iIRS. In [16], unknown devices are assigned a trust level of

0.5, designating ignorance about the device.

• In industrial settings, or other contexts where the presence of unknown devices is not tolerated,

UTdefault.unregistered can be set to zero or a near-zero value, precluding thus any activity on behalf of such

devices. Some settings may include mixed environments, e.g. one operational, high-security

environment where the presence of unknown devices is not tolerated, and some from “guest”
environments that tolerate the presence of unknown devices. In such settings, the use of segregated

networks is envisioned [84], with each network portion running its own TMS instance(s), where each

TMS would be parametrized in accordance to the needs of its environment.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 85

6.2.1.6 Default user trust value for registered users

The parameter UTdefault.registered regulates the level of trust assigned to devices belonging to users that are

registered in the Cyber-Trust platform but for whom the owner of the TMS has not set a trust level. These

users (and their devices) can be assigned a higher default level of trust than unknown users, taking into

account that they can be traced and made accountable for the activities of their devices; under this view,

accountability should act as a deterrent for deliberate malicious actions (although malicious activities carried

out without the user’s knowledge cannot be precluded).

Still, the default trust level associated with registered users again would depend on the level of tolerance for

unknown devices in the environment:

• In smart home environments, where resources may be shared with visitors, UTdefault.registered may be

set indicatively to some value in the range [0.6-0.7], being higher than the indicative value for the

UTdefault.unregistered parameter. Similarly to the case of setting the value of UTdefault.registered, the actual

value should be set in accordance to the access and countermeasure policies defined in the iIRS.

• In industrial settings, or other contexts where the presence of unknown devices is not tolerated,

UTdefault.registered can be set to a zero or near-zero value. In mixed environments, again network

segregation [84] may be employed, with each network portion running its own TMS instance(s),

where each TMS would be parametrized in accordance to the needs of its environment.

6.2.2 Performance issues

Besides the functional behaviour of the TMS and its ability to deliver highly accurate assessments of devices,

the performance of the TMS is also of essence, since trust assessments and notifications for trust changes

should be delivered in a timely fashion, in order to enable other modules to take prompt actions, putting

suitable countermeasures in effect. In this section, we survey aspects of the TMS performance. All

measurements presented in this section were obtained on a TMS instance running on a machine equipped

with an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz with 6 hyperthreading-enabled cores, capable of running

a maximum of 12 simultaneous threads. Messages were sent to the message bus via a simulator program,

and subsequently retrieved and processed by the TMS triggering event receptor (c.f. subsection 4.3).

Figure 6.4 illustrates the message throughput, i.e. the number of messages that can be processed by the TMS

per second (average over a mixture of incoming messages), in relation to the amount of parallelism allowed

in message processing7. In this configuration, only the built-in level 1 cache of Hibernate was enabled [85].

We can observe that message processing throughput is maximized value when 10 cores are employed; this

is due to the fact that at this level of parallelism, messages can be efficiently processed concurrently by

exploiting the parallelism capability of the underlying hardware, while also allowing the allocation of two

cores to the storage subsystem (Hibernate operating on top of a MariaDB instance).

7 Every incoming message was assigned to a different thread, and the amount of allowed parallelism was

programmatically constrained.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 86

Figure 6.4. Message processing time using only Hibernate level 1 cache

Figure 6.5 illustrates the message throughput in relation to the amount of parallelism allowed in message

processing when Hibernate level 2 [85] cache was enabled. We can observe that again message processing

time is maximized when 10 cores are employed, however the overall message throughput is less than the

one obtained when only level 1 caching was employed. This is attributed to the fact that level 1 cache actually

suffices for the purposes of the TMS, and the introduction of level 2 caching adds an overhead for managing

this cache, without providing any actual benefits for application performance.

Figure 6.5. Message processing time when the Hibernate level 2 cache is enabled

In both Figure 6.4 and Figure 6.5, throughput is measured at an end-to-end level, i.e. from the time that

messages are sent from their sources (the simulator program, in our case) until the time they are processed

by the TMS. This interval include (a) the time needed for the messages to be posted to the message bus (b)

the time needed for the message bus to internally organize messages and make them available for

consumption, (c) the time needed for the TMS to dequeue messages and (d) the time needed by the TMS to

process messages and update the devices’ trust level. The last factor of message processing time was further
analysed to determine the net time needed by the TMS to process messages internally. Table 6.2 depicts the

further breakdown of the message processing time within the TMS. In Table 6.2 we can observe that the time

needed to decode the message from its JSON or XML representation and validate its digital signature ranges

from 1-6 msec, depending on the message encoding and size. Large, XML-encoded messages are the ones

20

22

24

26

28

30

32

34

1 2 5 10 20

M
e

ss
a

g
e

 t
h

ro
u

g
h

p
u

t
(m

sg
s/

se
c)

Number of concurrent threads

20

21

22

23

24

25

26

27

28

29

30

1 2 5 10 20

M
e

ss
a

g
e

 t
h

ro
u

g
h

p
u

t
(m

sg
s/

se
c)

Number of concurrent threads

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 87

necessitating more processing time at this stage; this particularly applies to messages sourced from the iIRS,

where the whole topology of the smart home is described/updated (including aspects of connectivity and

vulnerabilities for each device). On the other hand, small JSON-encoded messages that only affect a single

device (e.g. messages reporting that non-compliant behaviour is detected for a device) necessitate

considerably less time. The same remarks hold for the stage of processing the messages and updating the

trust assessment: for instance, topology update messages and this is bound to affect many devices within

the smart home/SOHO configuration.

The statistics in Table 6.2 also affirm that while the use of digital signatures in the Cyber-Trust bus messages

incurs an extra overhead, this overhead is very small, and is fully justifiable, taking into account the level of

resilience against false data injection that it offers.

Table 6.2. Breakdown of message processing time within the TMS

Process Time needed

Decoding/de-serialization and validation of digital signatures 1-6 msec

Processing of message and update of trust assessments 8-62msec

The TMS also implements a REST API, through which information can be retrieved or set. Figure 6.6 depicts

the performance of the REST API in terms of requests per second that can be served (a mixture of requests

were used). The Apache Benchmark tool8 was used to perform these measurements. The throughput of the

TMS REST API is much higher than the corresponding metric for messages received through the Cyber-Trust

bus, because the REST API implementations retrieve or set individual data items, and do not perform

extensive processing. Again, the concurrency level of 10 delivers the higher throughput, since it best matches

and exploits the underlying hardware parallelism.

Figure 6.6. Throughput of the TMS REST API

In Figure 6.6 we can observe that when cache is enabled on the REST interface, the performance is higher by

a factor ranging from 8% (at concurrency level 10) to 22% (at concurrency level equal to 1). Since the REST

API is implemented as a separate process than the bus message processor, and under this implementation

the configuration with no cache enabled guarantees better result consistency, the no cache configuration is

deployed, taking also into account the very small magnitude of the absolute request processing time (98% of

requests are served in less than 5 msec when the concurrency level is set to 10).

8 https://httpd.apache.org/docs/2.4/programs/ab.html

0

500

1000

1500

2000

2500

1 2 5 10 20

T
h

ro
u

gh
p

u
t

(r
e

q
u

e
st

s/
se

co
n

d
)

Level of concurrency

Without cache With cache

https://httpd.apache.org/docs/2.4/programs/ab.html

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 88

6.3 TMS validation

Table 6.3 lists the KPIs for the TMS, as identified in Cyber-Trust project deliverable D8.1 [72]. There are two

KPIs for the CYBER-TRUST KPIs for the TMS and Administrative module. One is introduced in the DoA, while

the second one is proposed by the consortium.

Table 6.3: CYBER-TRUST KPIs for the TMS and Administrative module

KPI-ID DOA Name Measurement Goal

KPI-5.3  TMS effectiveness The ratio of cyber threats (of varying

sophistication and severity) mitigated due to

denying access to isolating IoT devices tagged as

low-trust/high risk by the TMS.

≥ 2%

KPI-5.6 TMS awareness degree Percentage of attacks for which a timely warning

was issued by the TMS.

≥ 5%

The full assessment of these KPIs necessitates a fully working platform and should take into account (a) the

capability of Cyber-Trust traffic scanning components to identify attacks and deviations, (b) the capability of

Cyber-Trust device scanning components to identify compromises and vulnerabilities, (c) the timeliness that

such incidents are reported to the TMS (d) the capability of the TMS to appropriately adjust the offending

devices’ trust according to the observed incidents and report these modifications through the Cyber-Trust

message bus and (e) the appropriateness of measures taken by Cyber-Trust response components to the

announcements of demoted trust issued by the TMS. At the current implementation stage, Cyber-Trust

platform integration is an ongoing task and hence the KPIs listed in Table 6.3 cannot be holistically assessed.

In the following subsections we will examine item (d) above, focusing on the response of the TMS to irregular

activities that are detected and reported within the protected infrastructure, taking into account the

parametrization aspects of the TMS, as analysed in subsection 6.2.

6.3.1 TMS response to detected attacks

Figure 6.7 illustrates the TMS response to detected attacks, in some indicative scenarios:

• The case labelled as worst case corresponds to the case that a device owned by the owner of the

infrastructure, or a different user completely trusted by the owner, is compromised and launches

attacks; furthermore, the same device is known by peer TMSs which testify for its “benigness” (i.e.
give a trust score equal to 1), and the weight assigned to the behaviour-based dimension of trust is

at its lowest setting, 0.65 (c.f. subsection 6.2.1.3). Finally, no device compromises or vulnerabilities

are detected for this device, and therefore its status-based and risk-based scores are set to 1.

Under these premises, the overall score of the device is set equal to 0.545; the time needed by the

TMS to demote its score from 1 to 0.545 is equal to the time required to process the message

reporting the misbehaviour. This amount of demotion should be adequate to inhibit access by the

misbehaving device to all important resources within the installation (denoted as “critical” by the
user).

As discussed in the TMS performance evaluation section (subsection 6.2.2), the time needed by the

TMS to process an incoming message is always less than 70 msec; in particular, since messages

reporting attacks are small and focused on the single node launching the attack, the time will be

considerably lower than this upper bound, approximately equal to 20 msec. The new assessment of

the node trust will be instantaneously reported on the message bus, for the information and perusal

of other Cyber-Trust modules.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 89

Figure 6.7. TMS response to detected attacks

• A second indicative case is that a known device is detected to launch attacks, however no

compromise is detected for this device. Again, the device belongs to the infrastructure owner or a

different, completely trusted user, but contrary to the “worst case” discussed above, no peer TMSs
testify for the “benigness” of the device; this may happen either because no peer TMSs exist, or peer
TMSs have no opinion on the device, or because they are aware of its malicious behaviour. In such

circumstances, the TMS will demote the trust score of the device to 0.35; this is deemed adequate

to block the device’s access to most resources within the infrastructure. The time needed for the

TMS to proceed with trust demotion and notification of the infrastructure is again in the range of

20 msec, which is deemed satisfactory.

• Finally, we consider the case that the device detected to launch the attack is unknown to the

infrastructure, i.e. it does not belong to any user registered with the Cyber-Trust platform. In this

case, the trust level of the device will be further demoted as discussed in subsections 4.2.6 and

6.2.1.5, and will be set to 0.175. This is a very low value, which would normally preclude all access by

the device to resources within the protected infrastructure. In this case too, the time needed for the

TMS to demote the trust level of the and notify other Cyber-Trust components is in the range of

20 msec, which is deemed satisfactory.

Figure 6.7 focuses on the reaction of the TMS to behaviours that are positively characterised as “attacks” by
relevant Cyber-Trust components; in the context of networks however certain behaviours can be traced

which are not positively characterized as attacks but are however harmful for the infrastructure. These

behaviours include, among others, denial of service (DoS) attacks as well as distributed DoS attacks (DDoS).

Note that while it is possible that the Cyber-Trust components characterize these behaviours as attacks, in

which case the discussion made for Figure 6.7 applies, the following analysis pertains to the case that such

behaviours are not reported as attacks, but using other tags (and more specifically, deviant behaviours). The

TMS can thus foster the defence against such activities, by handling reports on deviations from behaviours

that are considered “normal”.

In the context of DoS attacks, a single device generates very high workloads for one or more machines, aiming

to deplete their resources and thus render them incapable of offering their services to their legitimate users.

When a device launches a DoS attack, the network traffic generated by the device will be considerably higher

than the usual values observed for the same device. Correspondingly, a device under a DoS attack will exhibit

high network traffic as well as resource usage that deviates from usual metrics for the particular device. Both

these behaviours will be monitored by Cyber-Trust components and subsequently be reported via messages

through the Cyber-Trust message bus, and therefore the relevant information will be intercepted by the TMS.

0

0.2

0.4

0.6

0.8

1

misbehaving known device, worst case

misbehaving known device, no "good mouthing"

unknown misbehaving device

time of attack

time of TMS awareness

time of TMS response

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 90

Figure 6.8 displays the evolution of a device’s trust that is detected to generate abnormally high network
traffic and/or have excessively high resource usage metrics, for the same three indicative cases described

above. In the context of typical DoS attacks, these deviations are continuous, hence the behaviour-based

trust is constantly reset to zero and not replenished. In more detail:

• In the case labelled as “continuous deviations, worst case” (a device owned by the owner of the

infrastructure, or a different user completely trusted by the owner, is compromised and launches

DoS attacks; the same device is known by peer TMSs which testify for its “benigness”; the weight
assigned to the behaviour-based dimension of trust is equal to 0.65; no device compromises or

vulnerabilities are detected for this device, and therefore its status-based and associated risk-based

scores are set to 1), , the overall score of the device is set equal to 0.545; the time needed by the

TMS to demote its score from 1 to 0.545 is equal to the time required to process the message

reporting the deviation. This amount of demotion should be adequate to preclude access by the

deviant device to all important resources within the installation (denoted as “critical” by the user).
Notably, this demoted trust level will also apply to the device targeted by the attack: this may result

in inability of this device to access resources that are needed for delivering the services it realizes to

legitimate user. This can be tackled by setting explicitly the trust level of this device to a higher level,

yet again the TMS will be able to report a low behaviour-based trust, hence alerting tools will be able

to notify the infrastructure owner and/or the security officer of the demotion.

As discussed in the TMS performance evaluation section (subsection 6.2.2), the time needed by the

TMS to process an incoming message is always less than 70 msec; in particular, since messages

reporting attacks are small and focused on the single node launching the attack, the time will be

considerably lower than this upper bound, approximately equal to 20 msec. The new assessment of

the node trust will be instantaneously reported on the message bus, for the information and perusal

of other Cyber-Trust modules.

Figure 6.8. Evolution of a deviant device’s trust, continuous deviations

• In the case labelled as “continuous deviations, no good mouthing” (a known device is compromised
and detected to launch DoS attacks; no compromise is detected for this device; the device belongs

to the infrastructure owner or a different, completely trusted user; no peer TMSs testify for the

“benigness” of the device), the TMS will demote the trust score of the device to 0.35; this is deemed

adequate to block the device’s access to most resources within the infrastructure. The time needed
for the TMS to proceed with trust demotion and notification of the infrastructure is again in the range

0

0.2

0.4

0.6

0.8

1

D
e

v
ic

e
 t

ru
st

continuous deviations, worst case continuous deviations, no "good mouthing"

continuous deviations, unknown device

time of attack

time of TMS awareness

time of TMS response

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 91

of 20 msec, which is deemed satisfactory. Again, this demoted trust level will also apply to the device

targeted by the attack, and this can be tackled as described in the previous case.

• Finally, in the case labelled as “continuous deviations, unknown device” (the device detected to
launch the attack is unknown to the infrastructure; no compromise is detected; no peer TMS testifies

for the device’s “beningness”), the trust level of the device will be further demoted as discussed in

subsections 4.2.6 and 6.2.1.5, and will be set to 0.175. This is a very low value, which would normally

preclude all access by the device to resources within the protected infrastructure. In this case too,

the time needed for the TMS to demote the trust level of the and notify other Cyber-Trust

components is in the range of 20 msec, which is deemed satisfactory.

Figure 6.9 depicts the same three cases in the event that the malicious node combines the DoS attack with

the opportunistic attack pattern, i.e. it adopts a good behaviour for some time periods, in order to have its

trust level replenished. Notably, the lengthier the time period within which the benign behaviour is adopted,

the less efficient the DoS attack, since for these periods the services of the target devices will be offered

normally, yet again even the occasional disruptions are undesirable. We can observe here that unknown

devices will be assigned a low trust score for most of the time, and therefore their access to most

infrastructure resources will be inhibited. In the absence of good mouthing, again accesses to important

resources will be normally blocked, but access to resources of lesser importance may be granted. Finally, in

the worst-case scenario, there exist periods where the malicious device trust is above 0.66, a threshold that

may be associated with benign/trusted devices, however these intervals are small. In all cases, the TMS will

be report low behaviour-based scores, hence alerting tools will be able to notify the infrastructure owner

and/or the security officer of the demotion.

Figure 6.9. Evolution of a deviant device’s trust, occasional deviations

Finally, it is worth noting that in DDoS attacks, it is highly probable that no single attacking device will exhibit

a deviant behaviour, because the task of request submission towards the target machine(s) is distributed

among numerous cooperating malicious nodes. However, the deviation in the behaviour of the target

device(s) will be flagged, and therefore alerts will be issues to the infrastructure owner and/or the security

officer of the demotion.

0

0.2

0.4

0.6

0.8

1

D
e

v
ic

e
 t

ru
st

occasional deviations, worst case occasional deviations, no "good mouthing"

occasional deviations, unknown device

time of attack

time of TMS awareness

time of TMS response

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 92

6.3.2 TMS contribution to proactive defence

Proactive defence refers to the measures that can be taken to prevent the launching of attacks against the

protected infrastructure, limit the probability of their success or confine the damage that will be sustained

in case that an attack is successful.

Proactive defence is based on the identification of vulnerabilities and their interdependencies [86], while the

value of assets can also be taken into account [87]. To support proactive defence, the TMS computes and

makes available the status-based trust assessment and the associated risk-based trust assessment. These

dimensions can be reported separately by the TMS, and alerting tools can issue notifications to the

infrastructure owner and/or security officers regarding the presence of weaknesses or risks within the

infrastructure.

In particular, status-based trust assessments will report a zero score for devices that are known to be

compromised, while for non-compromised devices the status-based trust assessments will depend on the

number and impact of vulnerabilities that are present on the device. Hence, the separate reporting of status-

based trust assessments will allow infrastructure owners to identify devices needing remediation or patching,

in order to restore their health or increase their resilience against attacks, respectively.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 93

7. Conclusions

In this deliverable we have presented the current development status of the Cyber-Trust trust management

system (TMS), to be integrated into the operational environment. In particular, the following aspects of the

TMS were described:

1. the functionality, technological innovations, and API of the TMS;

2. a reiteration of the review of TMS models, architectures and systems, under the viewpoint of the

overall Cyber-Trust architecture;

3. the design of the TMS, with a comprehensive presentation of the trust computation algorithm and a

detailed view of the architecture;

4. a compilation of the threats that the TMS should mitigate or support their mitigation, surveying both

attacks against the trust computation algorithm and attacks against the infrastructure;

5. an evaluation of the TMS resilience against attacks, complete with parameter tuning, assessment of

performance aspects and validation against the goals of the Cyber-Trust platform.

The TMS implementation will be integrated with the other platform components in the context of Task 8.3.

The integrated prototype will then be evaluated in a holistic fashion with respect to the Cyber-Trust platform

KPIs.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 94

8. References

[1] N. Kolokotronis et al., “Cyber-Trust Project D5.1 State-of-the-art on proactive technologies,” 2019.

[2] D.-Z. Sun and L. Sun, “On Secure Simple Pairing in Bluetooth Standard v5.0-Part I: Authenticated Link

Key Security and Its Home Automation and Entertainment Applications,” Sensors, vol. 19, no. 5, p.

1158, Mar. 2019, doi: 10.3390/s19051158.

[3] S. Cuomo et al., “Cyber-Trust Project D5.3: CYBER-TRUST proactive technology tools,” 2020.

[4] R. Binnendijk et al., “Cyber-Trust Project D4.4: Architecture and design specifications: final,” 2019.

[5] M. Blaze, J. Ioannidis, and A. D. Keromytis, “Experience with the KeyNote Trust Management System:
Applications and Future Directions,” 2003, pp. 284–300.

[6] M. Petković and W. Jonker, Eds., Security, Privacy, and Trust in Modern Data Management. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007.

[7] P. A. Bonatti and P. Samarati, “A uniform framework for regulating service access and information

release on the Web,” J. Comput. Secur., vol. 10, no. 3, pp. 241–271, Jul. 2002, doi: 10.3233/JCS-2002-

10303.

[8] K. Irwin and T. Yu, “Preventing attribute information leakage in automated trust negotiation,” in
Proceedings of the 12th ACM conference on Computer and communications security - CCS ’05, 2005,

p. 36, doi: 10.1145/1102120.1102128.

[9] N. Li, J. C. Mitchell, and W. H. Winsborough, “Beyond proof-of-compliance: security analysis in trust

management,” J. ACM, vol. 52, no. 3, pp. 474–514, May 2005, doi: 10.1145/1066100.1066103.

[10] C. Vassilakis et al., “Cyber-Trust Project D2.1: Threat landscape: trends and methods,” 2018.

[11] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack graph generation,” in
Proceedings of the 13th ACM conference on Computer and communications security - CCS ’06, 2006,

pp. 336–345, doi: 10.1145/1180405.1180446.

[12] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using Bayesian Attack
Graphs,” IEEE Trans. Dependable Secur. Comput., vol. 9, no. 1, pp. 61–74, Jan. 2012, doi:

10.1109/TDSC.2011.34.

[13] J. Guo, I.-R. Chen, and J. J. P. Tsai, “A survey of trust computation models for service management in
internet of things systems,” Comput. Commun., vol. 97, pp. 1–14, Jan. 2017, doi:

10.1016/j.comcom.2016.10.012.

[14] Y. Ruan and A. Durresi, “A survey of trust management systems for online social communities – Trust

modeling, trust inference and attacks,” Knowledge-Based Syst., vol. 106, pp. 150–163, Aug. 2016, doi:

10.1016/j.knosys.2016.05.042.

[15] I.-R. Chen, F. Bao, and J. Guo, “Trust-Based Service Management for Social Internet of Things

Systems,” IEEE Trans. Dependable Secur. Comput., vol. 13, no. 6, pp. 684–696, Nov. 2016, doi:

10.1109/TDSC.2015.2420552.

[16] F. Bao and I.-R. Chen, “Dynamic trust management for internet of things applications,” in Proceedings

of the 2012 international workshop on Self-aware internet of things - Self-IoT ’12, 2012, p. 1, doi:

10.1145/2378023.2378025.

[17] N. Djedjig, D. Tandjaoui, F. Medjek, and I. Romdhani, “New trust metric for the RPL routing protocol,”
in 2017 8th International Conference on Information and Communication Systems (ICICS), Apr. 2017,

pp. 328–335, doi: 10.1109/IACS.2017.7921993.

[18] F. Medjek, D. Tandjaoui, I. Romdhani, and N. Djedjig, “A Trust-Based Intrusion Detection System for

Mobile RPL Based Networks,” in 2017 IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 95

Computing (CPSCom) and IEEE Smart Data (SmartData), Jun. 2017, pp. 735–742, doi: 10.1109/iThings-

GreenCom-CPSCom-SmartData.2017.113.

[19] F. Bao, I.-R. Chen, and J. Guo, “Scalable, adaptive and survivable trust management for community of
interest based Internet of Things systems,” in 2013 IEEE Eleventh International Symposium on

Autonomous Decentralized Systems (ISADS), Mar. 2013, pp. 1–7, doi: 10.1109/ISADS.2013.6513398.

[20] I.-R. Chen, J. Guo, and F. Bao, “Trust Management for SOA-Based IoT and Its Application to Service

Composition,” IEEE Trans. Serv. Comput., vol. 9, no. 3, pp. 482–495, May 2016, doi:

10.1109/TSC.2014.2365797.

[21] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT: A trust management model based on

fuzzy reputation for internet of things,” Comput. Sci. Inf. Syst., vol. 8, no. 4, pp. 1207–1228, 2011, doi:

10.2298/CSIS110303056C.

[22] P. N. Mahalle, P. A. Thakre, N. R. Prasad, and R. Prasad, “A fuzzy approach to trust based access control
in internet of things,” in Wireless VITAE 2013, Jun. 2013, pp. 1–5, doi: 10.1109/VITAE.2013.6617083.

[23] C. V. L. Mendoza and J. H. Kleinschmidt, “Mitigating On-Off Attacks in the Internet of Things Using a

Distributed Trust Management Scheme,” Int. J. Distrib. Sens. Networks, vol. 11, no. 11, p. 859731,

Nov. 2015, doi: 10.1155/2015/859731.

[24] S. Namal, H. Gamaarachchi, G. MyoungLee, and T.-W. Um, “Autonomic trust management in cloud-

based and highly dynamic IoT applications,” in 2015 ITU Kaleidoscope: Trust in the Information Society

(K-2015), Dec. 2015, pp. 1–8, doi: 10.1109/Kaleidoscope.2015.7383635.

[25] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management in the Social Internet of Things,” IEEE

Trans. Knowl. Data Eng., vol. 26, no. 5, pp. 1253–1266, May 2014, doi: 10.1109/TKDE.2013.105.

[26] Z. A. Khan, J. Ullrich, A. G. Voyiatzis, and P. Herrmann, “A Trust-based Resilient Routing Mechanism

for the Internet of Things,” in Proceedings of the 12th International Conference on Availability,

Reliability and Security - ARES ’17, 2017, pp. 1–6, doi: 10.1145/3098954.3098963.

[27] Y. Ben Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust management system design for the
Internet of Things: A context-aware and multi-service approach,” Comput. Secur., vol. 39, pp. 351–
365, Nov. 2013, doi: 10.1016/j.cose.2013.09.001.

[28] S. K. Prajapati, S. Changder, and A. Sarkar, “Trust Management Model for Cloud Computing

Environment,” arXiv.org, Apr. 2013, [Online]. Available: https://arxiv.org/abs/1304.5313.

[29] X. Wu and F. Li, “A multi-domain trust management model for supporting RFID applications of IoT,”
PLoS One, vol. 12, no. 7, p. e0181124, Jul. 2017, doi: 10.1371/journal.pone.0181124.

[30] J. Yuan and X. Li, “A Reliable and Lightweight Trust Computing Mechanism for IoT Edge Devices Based
on Multi-Source Feedback Information Fusion,” IEEE Access, vol. 6, pp. 23626–23638, 2018, doi:

10.1109/ACCESS.2018.2831898.

[31] M. Mahmud et al., “A Brain-Inspired Trust Management Model to Assure Security in a Cloud Based

IoT Framework for Neuroscience Applications,” Cognit. Comput., vol. 10, no. 5, pp. 864–873, Oct.

2018, doi: 10.1007/s12559-018-9543-3.

[32] K. Govindan and P. Mohapatra, “Trust Computations and Trust Dynamics in Mobile Adhoc Networks:
A Survey,” IEEE Commun. Surv. Tutorials, vol. 14, no. 2, pp. 279–298, 2012, doi:

10.1109/SURV.2011.042711.00083.

[33] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust algorithm for reputation
management in P2P networks,” in Proceedings of the twelfth international conference on World Wide

Web - WWW ’03, 2003, p. 640, doi: 10.1145/775152.775242.

[34] Li Xiong and Ling Liu, “PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic

Communities,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 07, pp. 843–857, Jul. 2004, doi:

10.1109/TKDE.2004.1318566.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 96

[35] F. Gómez Mármol and G. Martínez Pérez, “Providing trust in wireless sensor networks using a bio-

inspired technique,” Telecommun. Syst., vol. 46, no. 2, pp. 163–180, Feb. 2011, doi: 10.1007/s11235-

010-9281-7.

[36] A. J. H. Witwit and A. K. Idrees, “A Comprehensive Review for RPL Routing Protocol in Low Power and

Lossy Networks,” 2018, pp. 50–66.

[37] R. Ismail and A. Josang, “The Beta Reputation System,” in Proceedings of the BLED 2002 Conference,

2002, [Online]. Available: https://aisel.aisnet.org/bled2002/41.

[38] A. Arabsorkhi, M. Sayad Haghighi, and R. Ghorbanloo, “A conceptual trust model for the Internet of
Things interactions,” in 2016 8th International Symposium on Telecommunications (IST), Sep. 2016,

pp. 89–93, doi: 10.1109/ISTEL.2016.7881789.

[39] J. Golbeck, “Personalizing Applications through Integration of Inferred Trust Values in Semantic Web-

Based Social Networks,” in Proceedings of the Semantic Networks Analysis Workshop, 2005.

[40] I. D. Chakeres and E. M. Belding-Royer, “AODV routing protocol implementation design,” in 24th

International Conference on Distributed Computing Systems Workshops, 2004. Proceedings., 2004, pp.

698–703, doi: 10.1109/ICDCSW.2004.1284108.

[41] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed Reputation Management for Secure and Efficient

Vehicular Edge Computing and Networks,” IEEE Access, vol. 5, pp. 25408–25420, 2017, doi:

10.1109/ACCESS.2017.2769878.

[42] M. K. Muchahari and S. K. Sinha, “A New Trust Management Architecture for Cloud Computing

Environment,” in 2012 International Symposium on Cloud and Services Computing, Dec. 2012, pp.

136–140, doi: 10.1109/ISCOS.2012.30.

[43] V. Merekoulias et al., “A trust management architecture for autonomic Future Internet,” in 2010 IEEE

Globecom Workshops, Dec. 2010, pp. 616–620, doi: 10.1109/GLOCOMW.2010.5700394.

[44] J. Zhang, R. Shankaran, A. O. Mehmet, V. Varadharajan, and A. Sattar, “A trust management
architecture for hierarchical wireless sensor networks,” in IEEE Local Computer Network Conference,

Oct. 2010, pp. 264–267, doi: 10.1109/LCN.2010.5735718.

[45] G. Karame, I. T. Christou, and T. Dimitriou, “A Secure Hybrid Reputation Management System for
Super-Peer Networks,” in 2008 5th IEEE Consumer Communications and Networking Conference,

2008, pp. 495–499, doi: 10.1109/ccnc08.2007.116.

[46] H. Salah and M. Eltoweissy, “PETRA: Personalized Trust Management Architecture (Application
Paper),” in 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), Jul.

2016, pp. 287–296, doi: 10.1109/IRI.2016.46.

[47] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante, “A reputation-based

approach for choosing reliable resources in peer-to-peer networks,” in Proceedings of the 9th ACM

conference on Computer and communications security - CCS ’02, 2002, p. 207, doi:

10.1145/586110.586138.

[48] Girish Suryanarayana, J. R. Erenkrantz, and R. N. Taylor, “An architectural approach for decentralized
trust management,” IEEE Internet Comput., vol. 9, no. 6, pp. 16–23, Nov. 2005, doi:

10.1109/MIC.2005.119.

[49] R. Friedman and A. Portnoy, “A generic decentralized trust management framework,” Softw. Pract.

Exp., vol. 45, no. 4, pp. 435–454, Apr. 2015, doi: 10.1002/spe.2226.

[50] I. Dionysiou, H. Gjermundrød, and D. E. Bakken, “GUTS: A Framework for Adaptive and Configureable
Grid User Trust Service,” 2011, pp. 84–99.

[51] H. Team, “Haskell and Android,” 2019. https://wiki.haskell.org/Android (accessed Apr. 10, 2020).

[52] M. Srivatsa, L. Xiong, and L. Liu, “TrustGuard,” in Proceedings of the 14th international conference on

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 97

World Wide Web - WWW ’05, 2005, p. 422, doi: 10.1145/1060745.1060808.

[53] V. Thummala and J. Chase, “SAFE: A Declarative Trust Management System with Linked Credentials,”
Oct. 2015, doi: arXiv:1510.04629v2.

[54] Q. Cao, V. Thummala, J. S. Chase, Y. Yao, and B. Xie, “Certificate Linking and Caching for Logical Trust,”
Jan. 2017, [Online]. Available: http://arxiv.org/abs/1701.06562.

[55] Cloud Security Alliance, “CTP Data Model and API, rev. 2.13,” 2016. [Online]. Available:
https://downloads.cloudsecurityalliance.org/assets/research/cloudtrust-protocol/CTP-Data-Model-

And-API.pdf.

[56] Cloud Security Alliance, “Cloud Trust Protocol Daemon Prototype,” 2016. [Online]. Available:
https://github.com/CloudSecurityAlliancePublic/ctpd.

[57] Cloud Security Alliance, “The CTP prototype back office API, rev. 0.2,” 2015. [Online]. Available:
https://github.com/CloudSecurityAlliancePublic/ctpd/blob/master/client/ CTP-Admin-API.pdf.

[58] B. Škorić, S. J. A. de Hoogh, and N. Zannone, “Flow-based reputation with uncertainty: evidence-based

subjective logic,” Int. J. Inf. Secur., vol. 15, no. 4, pp. 381–402, Aug. 2016, doi: 10.1007/s10207-015-

0298-5.

[59] ThingML, “JArduino project,” 2018. https://github.com/SINTEF-9012/JArduino (accessed Apr. 10,

2020).

[60] J. Renita and N. E. Elizabeth, “Network’s server monitoring and analysis using Nagios,” in 2017

International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),

Mar. 2017, pp. 1904–1909, doi: 10.1109/WiSPNET.2017.8300092.

[61] D. R. E. Lear, R. Droms, “Manufacturer Usage Description Specification, draft-ietf-opsawg-mud-25,”
2018. https://tools.ietf.org/html/draft-ietf-opsawg-mud-25 (accessed Apr. 13, 2020).

[62] E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal Defense Policies for Partially Observable
Spreading Processes on Bayesian Attack Graphs,” in Proceedings of the Second ACM Workshop on

Moving Target Defense - MTD ’15, 2015, pp. 67–76, doi: 10.1145/2808475.2808482.

[63] FIRST, “Common Vulnerability Scoring System version 3.1: Specification Document,” 2019. [Online].
Available: https://www.first.org/cvss/specification-document.

[64] E. Hulitt and R. B. Vaughn, “Information system security compliance to FISMA standard: a quantitative
measure,” Telecommun. Syst., vol. 45, no. 2–3, pp. 139–152, Oct. 2010, doi: 10.1007/s11235-009-

9248-8.

[65] United States General Accounting Office, “Information security risk assessment practices of leading

organizations,” 1998. [Online]. Available: http://www.gao.gov/special.pubs/ai00033.pdf.

[66] I. Kaliszewski and D. Podkopaev, “Simple additive weighting—A metamodel for multiple criteria

decision analysis methods,” Expert Syst. Appl., vol. 54, pp. 155–161, Jul. 2016, doi:

10.1016/j.eswa.2016.01.042.

[67] M. Modarres and S. Sadi-Nezhad, “Fuzzy Simple Additive Weighting Method by Preference Ratio,”
Intell. Autom. Soft Comput., vol. 11, no. 4, pp. 235–244, Jan. 2005, doi:

10.1080/10642907.2005.10642907.

[68] N. Griffiths, “Task delegation using experience-based multi-dimensional trust,” in Proceedings of the

fourth international joint conference on Autonomous agents and multiagent systems - AAMAS ’05,

2005, p. 489, doi: 10.1145/1082473.1082548.

[69] C. Gross, “REST-Based Model View Controller Pattern,” in Ajax Patterns and Best Practices, Apress,

pp. 333–368.

[70] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and defense techniques for reputation

systems,” ACM Comput. Surv., vol. 42, no. 1, pp. 1–31, Dec. 2009, doi: 10.1145/1592451.1592452.

 D5.1 State-of-the-art on proactive technologies

Copyright Cyber-Trust Consortium. All rights reserved. 98

[71] ENISA, “Threat Taxonomy,” 2016. [Online]. Available: https://www.enisa.europa.eu/topics/threat-

risk-management/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view.

[72] N. Kolokotronis et al., “Cyber-Trust Project D8.1: Platform evaluation plans,” 2020.

[73] L. K. Bysani and A. K. Turuk, “A Survey on Selective Forwarding Attack in Wireless Sensor Networks,”
in 2011 International Conference on Devices and Communications (ICDeCom), Feb. 2011, pp. 1–5, doi:

10.1109/ICDECOM.2011.5738547.

[74] X. Wei, “Analysis and Protection of SYN Flood Attack,” 2011, pp. 183–187.

[75] C. M. Mathas et al., “Evaluation of Apache Spot’s machine learning capabilities in an SDN/NFV enabled

environment,” in Proceedings of the 13th International Conference on Availability, Reliability and

Security - ARES 2018, 2018, pp. 1–10, doi: 10.1145/3230833.3233278.

[76] A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac, “A Survey on Sensor-based Threats to

Internet-of-Things (IoT) Devices and Applications,” Feb. 2018, [Online]. Available:
http://arxiv.org/abs/1802.02041.

[77] M. Ford et al., “A process to transfer Fail2ban data to an adaptive enterprise intrusion detection and

prevention system,” in SoutheastCon 2016, Mar. 2016, pp. 1–4, doi: 10.1109/SECON.2016.7506771.

[78] D. Hadžiosmanović, D. Bolzoni, and P. H. Hartel, “A log mining approach for process monitoring in
SCADA,” Int. J. Inf. Secur., vol. 11, no. 4, pp. 231–251, Aug. 2012, doi: 10.1007/s10207-012-0163-8.

[79] P. G. Kelley et al., “Guess Again (and Again and Again): Measuring Password Strength by Simulating

Password-Cracking Algorithms,” in 2012 IEEE Symposium on Security and Privacy, May 2012, pp. 523–
537, doi: 10.1109/SP.2012.38.

[80] H. Holm, “Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter?,” in 2014

47th Hawaii International Conference on System Sciences, Jan. 2014, pp. 4895–4904, doi:

10.1109/HICSS.2014.600.

[81] J.-L. Lassez, R. Rossi, S. Sheel, and S. Mukkamala, “Signature based intrusion detection using latent
semantic analysis,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE World

Congress on Computational Intelligence), Jun. 2008, pp. 1068–1074, doi:

10.1109/IJCNN.2008.4633931.

[82] R. deGraaf, J. Aycock, and M. J. Jacobson, “Improved Port Knocking with Strong Authentication,” in
21st Annual Computer Security Applications Conference (ACSAC’05), pp. 451–462, doi:

10.1109/CSAC.2005.32.

[83] K. Floyd, S. J. Harrington, and P. Hivale, “The autotelic propensity of types of hackers,” in Proceedings

of the 4th annual conference on Information security curriculum development - InfoSecCD ’07, 2007,

p. 1, doi: 10.1145/1409908.1409926.

[84] Ning Cai, Jidong Wang, and Xinghuo Yu, “SCADA system security: Complexity, history and new
developments,” in 2008 6th IEEE International Conference on Industrial Informatics, Jul. 2008, pp.

569–574, doi: 10.1109/INDIN.2008.4618165.

[85] TutorialsPoint, “Hibernate - Caching,” 2019.
https://www.tutorialspoint.com/hibernate/hibernate_caching.htm (accessed Apr. 20, 2020).

[86] S. Jajodia and S. Noel, “Topological Vulnerability Analysis,” 2010, pp. 139–154.

[87] A. N. Craig, S. J. Shackelford, and J. S. Hiller, “Proactive Cybersecurity: A Comparative Industry and
Regulatory Analysis,” Am. Bus. Law J., vol. 52, no. 4, pp. 721–787, Dec. 2015, doi: 10.1111/ablj.12055.

