

Advanced Cyber-Threat Intelligence, Detection, and

Mitigation Platform for a Trusted Internet of Things

Grant Agreement: 786698

D6.3 - CYBER-TRUST Network Tools

Work Package 6: Advanced cyber-attack

detection and mitigation

Document Dissemination Level

P Public Χ

CO Confidential, only for members of the Consortium (including the Commission Services)

Document Due Date: 31/01/2020

Document Submission Date: 31/01/2020

Co-funded by the Horizon 2020 Framework Programme of the European Union

Ref. Ares(2020)638710 - 01/02/2020

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 2

Document Information

Deliverable number: D6.3

Deliverable title: CYBER-TRUST network tools

Deliverable version: V1.2

Work Package number: WP6

Work Package title: Advanced cyber-attack detection and mitigation

Due Date of delivery: 31/01/2020

Actual date of delivery: 31/01/2020

Dissemination level: Public

Editor(s): Stefano Cuomo (Mathema)

Simone Naldini (Mathema)

Contributor(s): Gueltoum bendiab, Stavros Shiaeles (CSCAN)

Nicholas Kolokotronis, Konstantinos Ntemos (UOP)

Reviewer(s): Evangelos Sfakianakis (OTE)

George Pikramenos (UOP)

Project name: Advanced Cyber-Threat Intelligence, Detection, and Mitigation

Platform for a Trusted Internet of Things

Project Acronym Cyber-Trust

Project starting date: 1/5/2018

Project duration: 36 months

Rights: Cyber-Trust Consortium

Version History

Version Date Beneficiary Description

V0.1 02/12/2019 Mathema, UOP Table of contents and

distribution of work

V0.2 25/01/2020 CSCAN All the WP5 proactive

components’ have been
described

V0.3 20/01/2020 Mathema, CSCAN Consolidation of

document

V1.0 28/01/2020 Mathema Version ready for

review

V1.2 Final 31/01/202 Mathema Final Version

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 3

Acronyms

ACRONYM EXPLANATION

A Actor

AI Artificial Intelligence

AMPQ Advanced Message Queuing Protocol

APIs Application Programming Interface

AS Autonomous System

ASN Autonomous System Number

BTC Bitcoin

CEF Common Event Format

CIDR Classes Inter-Domain Routing

CPE Common Platform Enumeration

CT Cyber-Trust

CTI Cyber-Threat Intelligence

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerabilities Scoring System

CWE Common Weakness Enumeration

D Deliverable

DB Database

DLT Distributed Ledger Technology

DNS Domain Name System

DPIA Data Protection Impact Assessment

EQL Event Query Language

EU European Union

eVDB Enriched Vulnerability Database

FR Functional Requirement

GUI Graphic User Interface

ID Identification

IDS Intrusion Detection System

iRC iIRS Client

iRE iIRS Decision-making Engine

iRG iIRS Attack Graph Generator

iIRS Intelligent Intrusion Response

IoC Indicator of Compromise

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

LEA Law Enforcement Agency

LCPD Local Conditional Probability Distribution

M Month

MAC Address Media Access Control Address

MISP Malware Information Sharing Platform

NFR Non-Functional Requirement

NIDS Network Intrusion Detection System

NVD National Vulnerability Database

OCR Optical Character Recognition

OS Operative System

PHP Hypertext Preprocessor

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 4

REST Representational State Transfer

RGB Red Green Blue

SGA Smart Gateway Agent

SHO Smart Home Owner

SQL Structured Query Language

SSH Secure SHell

SSL Secure Socket Layers

STIX Structured Threat Information Expression

T Task

TLS Trust Level Score

TMS Trust Management Service

UI User Interface

URL Uniform Resource Locator

VERIS Vocabulary for Event Recording and Incident Sharing

VLAN Virtual Local Area Network

VM Virtual Machine

WP Work Package

XML Extensible Markup Language

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 5

Executive summary
This report is a contractual deliverable within the Horizon 2020 Project Cyber-Trust: Advanced Cyber-Threat

Intelligence, Detection, and Mitigation Platform for a Trusted Internet of Things.

The report provides a detailed description of the results of the task T6.3 “Cyber-Trust Network Tools” related
to the implementation of the tools of work package and according to the platform architecture as described

in D4.4.

In particular a description of tools targeting at (critical) network infrastructures, with a focus on botnet

detection and mitigation, is given. The tools are aimed to minimise the damage through anomaly detection,

deep packet inspection, and protocol analysis techniques.

The report gives technical information about the following components, Network repository, Cyber defence

Service, Smart Gateway Module and Intelligent Intrusion Response System. A chapter describes a visual

representation of data already integrated in the Cyber-Trust User Interfaces.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 6

Table of Contents

1. Introduction ... 9

1.1 Purpose of the document .. 9

1.2 Relations to other activities in the project .. 9

1.3 Structure of the document .. 9

2. Network Repository .. 10

2.1 Overview / objectives .. 10

2.2 Functionality coverage .. 10

2.2.1 Related requirements .. 10

2.2.2 Related use cases ... 11

2.3 Technology update .. 12

2.4 Application architecture .. 12

2.5 Application programming interfaces ... 13

2.6 Technology Stack ... 15

2.7 Physical architecture ... 16

2.8 User Interface .. 17

3. Cyber-Defense Service .. 19

3.1 Overview / objectives .. 19

3.2 Functionality coverage .. 19

3.2.1 Related requirements .. 20

3.2.2 Related use cases ... 21

3.3 Technology update .. 22

3.4 Application architecture .. 22

3.4.1 Suricata IDS .. 23

3.4.2 Anomaly Detection module ... 24

3.4.3 Deep Packet Inspection ... 26

3.5 Application programming interfaces ... 26

3.6 Technology Stack ... 28

3.7 Physical architecture ... 28

3.8 User Interface .. 29

4. Smart Gateway Module .. 31

4.1 Overview / objectives .. 31

4.2 Functionality coverage .. 31

4.2.1 Related requirements .. 31

4.2.2 Related use cases ... 33

4.3 Technology update .. 34

4.4 Application architecture .. 35

4.5 Application programming interfaces ... 35

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 7

4.6 Technology Stack ... 35

4.7 Physical architecture ... 36

5. Data representation integrated in the Cyber-Trust Interface .. 37

6. Intelligent intrusion response system .. 39

6.1 Overview / objectives .. 39

6.2 Cooperation with IDS and Network Repository .. 39

7. Conclusion .. 40

8. References ... 41

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 8

Table of Figures

Figure 2-1: Data view of the network architecture and assets repository .. 10

Figure 2-2: High level view of the network and assets repository architecture. .. 13

Figure 2-3: Technology stack of the network and assets repository architecture. ... 15

Figure 2-4: Login interface to the network assets repository architecture... 17

Figure 2-5: the network assets repository architecture REST APIs interface. ... 18

Figure 3-1: Activity diagram of the detection and mitigation process at the Cyber-Defense service level. ... 19

Figure 3-2: High-level design of the Cyber-Defense service. ... 23

Figure 3-3: High level design of the anomaly detection module .. 24

Figure 3-4: Output Binvis images for (1) malware pcap files of Lucky Ransomware traffic 25

Figure 3-5: Network evidence collection with Deep Packet Inspection .. 26

Figure 3-6: Visualisation of information from the Suricata IDS EVE log file through Kibana dashboard. 29

Figure 3-7:Kibana Alert dashboard. ... 30

Figure 4-1: High-level Architecture of the Smart Gateway Agent ... 35

Figure 5-1: Data representation integrated in Cyber-Trust UI .. 38

Figure 6-1: High-level illustration of cooperation between the iIRS and IDS .. 39

Table of Tables

Table 2-1: Functional requirements related to the Network architecture and assets repository 11

Table 2-2: Non-Functional requirements related to the Network architecture and assets repository. 11

Table 2-3: Use cases related to the Network architecture and assets repository. ... 11

Table 2-4:Network architecture and assets repository APIs ... 13

Table 2-5: Technology stack of the network architecture and assets repository. .. 16

Table 3-1: Functional requirements related to the Cyber-Defense service. ... 20

Table 3-2: Non-Functional requirements related to the Cyber-Defense service. ... 21

Table 3-3: Use cases related to the Cyber-Defense service. ... 21

Table 3-4: Tests results of the anomaly detection module ... 25

Table 3-5: Output types generated by Suricata in the “eve.json” file ... 27

Table 3-6: Technology stack of the Cyber-Defense service. .. 28

Table 4-1: Functional requirements related to the Smart Gateway Agent (SGA). .. 31

Table 4-2: Non-Functional requirements related to the Smart Gateway Agent (SGA). 33

Table 4-3: Use cases related to the Smart Gateway Agent (SGA). .. 33

Table 4-4: Output generated by A0g ... 35

Table 4-6: Technology stack of the Cyber-Defense service. .. 35

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 9

1. Introduction

1.1 Purpose of the document
This document is a technical description of the network tools for the detection and remediation of advanced

device attacks. The report provides a detailed description of the results of the task T6.3 “Cyber-Trust Network

Tools” related to the implementation of the tools of work package and according to the platform architecture
as described in D4.4.

In particular, a description of tools targeting at (critical) network infrastructures, with a focus on botnet

detection and mitigation, is given. The tools are aimed to minimise the damage through anomaly detection,

deep packet inspection, and protocol analysis techniques.

1.2 Relations to other activities in the project
The document is strongly linked to task 5.1, and to deliverable 5.3 (CYBER-TRUST proactive technology tools)

which describes the techniques and tools developed to combat threats on the network.

1.3 Structure of the document
The document is structured in order to describe the components related to the tools for network attack and

mitigation used in the Cyber-Trust platform.

In particular:

1. Network repository

2. Cyber defence Service

3. Smart Gateway Module

4. Intelligent Intrusion Response System

For each of these components, information will be given about:

• A general overview

• Functionality Coverage

• Application Architecture

• Application programming interfaces

• Technology stack

• Physical Architecture

• User Interface (where relevant)

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 10

2. Network Repository

2.1 Overview / objectives
The network architecture and assets repository (A16) is a set of tools that are used to collect, maintain and

store information on a network’s architecture including the topology and the security defenses that are

deployed at the network level, relevant device profile information, assets and their values, etc. This

component serves three main objectives within the ISP platform including the network monitoring and

scanning, network forensic evidence collection and data repositories, and risk characterization. The network

monitoring is done by capturing the outgoing/incoming traffic, ensuring thatvulnerability assessment is

performed, mapping hosts’ network Interfaces and providing network Routing table and VLANs. While the

network forensic evidence gathering is automatically performed under specific conditions. For example, with

the identification of an attack.

The data collection is restricted to only relevant network metadata that can be used as digital forensic

evidence in the court of law. This information is stored in the “ForensicEvidence” database (off-chain), while

the related hash values, timestamps and information regarding the owner of the data will be stored in the

DLT (on-chain). Further, the Network architecture and assets repository component provides necessary

information to the trust management service in order to calculate the trust level. Figure 1 gives a view of the

input and output data in the network architecture and assets repository component.

Figure 2-1: Data view of the network architecture and assets repository

2.2 Functionality coverage

The functional coverage of the Network architecture and assets repository includes the functional and non-

functional requirements of the component, which are collected from the end-user questionnaires, the state-

of-the-art review of relative technological advanced tools. Other requirements were derived from the

operational requirements of this component in order to be connected with other API of apps, protocols tools,

etc. These requirements fed the architectural requirements and structured some architectural specifications

of the platform.

2.2.1 Related requirements

The main functional requirements of the Cyber Trust platform related to the Network architecture and assets

repository are presented in Table 2-1, while the non-functional requirements are demonstrated in Table 2-2.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 11

Table 2-1: Functional requirements related to the Network architecture and assets repository

ID. FR

Requirement

Description Related

use cases

FR9 Based on the asset value of each device, users will perform mitigation

actions both automatically and manually (hybrid). This functional

requirement is related to the functional requirement FR65 of D2.4.

UCG-18-01

FR24 User will perform mitigation actions based on the asset value of each

device. The mitigation action could be performed automatically or

manually (hybrid). This functional requirement is related to the

functional requirement FR65 of D2.4.

UCG-18-01

FR26 The user should have the capability to define the time period after which

Cyber-Trust will perform mitigation actions automatically.

UCG-18-01,

UCG-18-03,

UCG-18-06

FR28 In case of an automatic Mitigation Action, the end-user through Cyber-

Trust platform would have the capability to visualise the additional

information about the mitigation actions taken through the visualisation

portal component (A01).

UCG-04-03

FR54 Cyber-Trust will create a network map of the respective infrastructure. System

FR55 The end user will be able to characterize each asset on the network and

the respective value.

UCG-04-02,

UCG-04-03

Table 2-2: Non-Functional requirements related to the Network architecture and assets repository.

ID. Non-FR

Requirement

Description Related

use cases

NFR2 Respect of EU legal framework in the automatic or manual collection of

data from the IoT devices that may contain forensic evidence that can be

used for analysis and in the court of law. The collection should be done in

specific conditions, such as abnormal behavior, low score of devices, etc.

UCG-14-01

NFR4 The Cyber-Trust platform will be capable of sending data (that might

contain forensic evidences) exported from a device via a file. (This

functionality will be available for LEAs). Based on this functionality, the

Cyber-Trust platform will be able to generate the Hash value of the file to

be sent.

UCG-11-01,

UCG-12-02

NFR5 Based on the functionality described in FR49 (from D2.4): The file must be

encrypted

UCG-14-04

NFR6 Based on the functionality described in FR49 (from D2.4): The transmission

of the data must be secure in order to ensure the integrity.

UCG-14-04

NFR32 Continuous monitoring and scanning of the device’s critical OS files.
Information such as a communication protocol, open ports, running

services, installed firmware etc., constitute correlation parameters for the

detection of possible vulnerabilities specific to each device.

UCG-09-01

2.2.2 Related use cases

The use case Scenarios (Presented in D2.3) related to the network architecture and assets repository are

presented in Table 2-3, while, the relationships between each requirement and those use cases are

demonstrated in Table 2-1 and Table 2-2.

Table 2-3: Use cases related to the Network architecture and assets repository.

Use case

reference

ID

Description

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 12

UCG-04-02 Characterize asset’s importance: The user prioritizes the attributes of the devices and their

services according to her preferences.

UCG-04-03 Define mitigation actions’ impact: The security officer quantifies the impact that the various

mitigation actions on the availability of the network resources to trusted devices. This

information, along with the smart home user’s preferences is used to define the utility

function which is required by the iIRS.

UCG-09-01 Monitor device critical OS files / vulnerabilities: The critical OS files/directories are

continuously monitored. They will be scanned for open ports and running processes and

obtained information is synced with the central backend database. In case any attempt is

made in modifying the state of the device, backend services are triggered to check the status

of vulnerability.

UCG-11-01 Gather device forensic evidence: The process of gathering evidence, especially in IoT

environments differs based on the device, it's storage capabilities and software. Therefore,

the collection and storage of forensic evidences (e.g. device log files, timestamps etc.) will be

depicted from the cyber-trust registered devices.

UCG-13-02 Compute device trust level: The trust module collects all needed information and

recomputes the trust level of the device

UCG-14-01 Update device critical OS files / vulnerabilities: In case a legitimate update is performed on

the OS, firmware or any device critical files, key device parameters are recalculated and

updated to the central database. Then the process of detecting vulnerabilities is also

performed.

UCG-14-04 Manage available patch databases: For each type of registered device, the Patch database

contains information related to the latest security fixes of the firmware as well as the relevant

binaries. Hash information is also securely stored to ensure the integrity of the vanilla patch

versions.

UCG-16-02 Discover Network: The exploitation of the Cyber-Trust device profiles conjoined with

location information to allow for support to visualization capabilities, either via dynamic

(flow) or static (GID) graphs.

UCG-18-01 Apply Mitigation Policy on Device: The decision taken at the network level is applied at the

device level.

UCG-18-03 Apply network security defense rule: Network security combines multiple rules and layers

of defenses at the edge and in the network. These include access control, application

security, Intrusion prevention system, firewall and many more.

UCG-18-06 Define applicable mitigation actions: The Security officer consults the cyber-attack graphical

security model, which contains the system’s security conditions and the available exploits, as
well as their relations, and defines the mitigation actions which are at the iIRS disposal.

2.3 Technology update
An extended search was performed to identify whether new versions or implementations had emerged since

the last review of the relevant areas. Since no interesting progress was reported during this period, the

current tools used by the network architecture and the asset repository remain those indicated in D6.1.

2.4 Application architecture
The following diagram (Figure 2) illustrates the conceptual view of the network architecture and assets

repository component. Its architecture is designed to allow enquiring information on a network’s
architecture (including the topology and the security defenses deployed therein), assets and their values, and

vulnerability assessment. As mentioned before, this component ensures the monitoring and scanning at the

network level as well as at the device level, which may involve the collection of relevant information in the

“ForensicEvidence” database, in case any attempt to modify the state of the device or network. While the
hash values of the collected information, time stamps regarding the data and information regarding the

owner of the data will be stored in the DLT (on-chain).

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 13

Figure 2-2: High level view of the network and assets repository architecture.

2.5 Application programming interfaces
The network architecture and assets repository component is written mostly in Linux utilities and Python

with the interface provided by Django-REST-Framework and direct JSON outputs in a folder. It consists of

three main parts:

1. The core which is responsible for actual capturing

2. The REST interface which calls the same REST APIs from the convenient Web interface.

3. The direct output is given to a predefined folder in a form of JSON provided by the REST APIs.

The JSON output folder has four main JSON files; “list_flow_matrix.json”, “list_hosts_interface.json”,
“list_nmap_vulnerabilities.json” and “list_routing_tables.json”. It also has extra JSON, “alert.json”, which
reports changes in any other JSON file in the folder. The description of those JSON outputs is provided in

Table 2-4. All the APIs of the network architecture and assets repository have two common input parameters;

the IP address or subnet and the “cached_or_live” parameter, which can either have the “cached” or “live”
values.

• live – The output will be computed on demand and the internal cache would be updated.

• cached – It will return cached output. So, for some long-running computation, this can be quicker

Table 2-4:Network architecture and assets repository APIs

API

Description Example response (JSON file)

List-flow-matrix This API provides information

about the network traffic,

where each object in the list

corresponds to flow that

happened. It has the following

output parameters:

1. Source: refers to the

source of address of

this flow.

2. Destination: refers to

the destination

address of this flow.

3. Source_port: refers to

the source port for this

connection.

 [
 {
 "source": "10.0.10.105",
 "destination": "178.248.236.150",
 "source_port": "33932",
 "destination_port": "443",
 "protocol": "TCP"
 },
 {
 "source": "178.248.236.150",
 "destination": "10.0.10.105",
 "source_port": "443",
 "destination_port": "33932",
 "protocol": "TCP"
 },
 {
 "source": "10.0.10.1",

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 14

4. Destination_port:

refers to the

destination port for

this connection.

5. Protocol: refers to the

Transport layer

protocol used (e.g.

TCP, UDP).

 "destination": "10.0.10.105",
 "source_port": "80",
 "destination_port": "38248",
 "protocol": "TCP"
 }
]

List-hosts-interfaces This API provides information

about the hosts and their

interface. It has the following

output parameters:

1. Hostname: refers to

the hostname of this

interface.

2. Interface_name:

refers to the name of

this specific interface.

3. IP_address: refers to

the host IP address.

4. connected_to_wan :

this parameter shows

if this interface is

connected to the

Internet or not.

 [
 {
 "hostname": "host-00:0c:29:c5:f1:ce",
 "interface_name": "fa0",
 "ip_address": "10.0.10.105",
 "connected_to_wan": true
 }
]

List-routing-tables This API fetches all the routing

tables in the network. It has

the following output

parameters:

1. Hostname: refers to

hostname where this

routing table resides.

2. Destination: refers to

the destination of this

routing entry.

3. Mask: refers to the

mask of this routing

entry.

4. Gateway: refers to the

gateway of this

routing entry.

5. Interface: refers to the

interface of this

routing entry.

[
 {
 "hostname": "pfsense",
 "destination": "default",
 "mask": "",
 "gateway": "10.0.20.1",
 "interface": "em1"
 },
 {
 "hostname": "pfsense",
 "destination": "10.0.10.0/24",
 "mask": "",
 "gateway": "link#1",
 "interface": "em0"
 },
 {
 "hostname": "pfsense",
 "destination": "10.0.10.1",
 "mask": "",
 "gateway": "link#1",
 "interface": "lo0"
 }
]

List-vlans This API provides the list of all

virtual LANs on the current

subnet. It has the following

output parameters:

1. Name: refers to the

name of this VLAN.

[
 {
 "name": "VLAN00",
 "address": "10.0.10.0",
 "netmask": "24",
 "gateway": "link#1"
 },

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 15

2. Address: refers to the

IP Address of CIDR

block.

3. Netmask: refers to the

Net mask for this CIDR

block.

4. Gateway: refers to the

default gateway for

this VLAN

 {
 "name": "VLAN01",
 "address": "10.0.20.0",
 "netmask": "24",
 "gateway": "link#2"
 }
]

List-nmap-vulners This API fetch the latest exploit from Vulners for given IP address. The output

format for this API can be found at: NMAP-Python library

 and Vulners.

1- Python-nmap (https://github.com/vulnersCom/nmap-vulners): python-nmap

is a python library which helps in using nmap port scanner. It allows to easily

manipulate nmap scan results and will be a perfect tool for systems

administrators who want to automatize scanning task and reports. It also

supports nmap script outputs.

2- Nmap-Vulners (https://github.com/vulnersCom/nmap-vulners): It uses some

well-known service to provide information about vulnerabilities.

Alerts This API reports changes in any

of the previous JSON files. It

has two main parameters:

1. Date: refers to the

date when the

changes is made.

2. API: The API affected

by the change.

[

 {

 “date”: 2019-07-09 20:10:48 .232480,

 “API”: list-routing-tables

 },

 {

 “date”: 2019-05-11 05:06:43 .081209,

 “API”: list-hosts-interfaces

 }

]

2.6 Technology Stack
As illustrated in Figure 3, the network architecture and assets repository component is written mostly in Linux

utilities and Python 3.7 with the interface provided by Django-REST-Framework and RESTful APIs.

Figure 2-3: Technology stack of the network and assets repository architecture.

https://github.com/vulnersCom/nmap-vulners
https://github.com/vulnersCom/nmap-vulners
https://github.com/vulnersCom/nmap-vulners

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 16

The following table provides a detailed description of the tools used in the development of the network and

assets repository architecture.

Table 2-5: Technology stack of the network architecture and assets repository.

Tool Version Description

Django-REST-

Framework
Any

Django is a Python-based free and open-source web framework, which

follows the model-template-view architectural pattern. It is used for

providing visual representation of the network architecture and assets

repository outputs.

SOFTFLOWD

Any

SOFTFLOWD1 is a flow-based network traffic analyser capable of Cisco

NetFlow data export. It is used to semi-statefully tracks traffic flows

recorded by listening on the network interface or by reading a packet

capture file. These flows may be reported via NetFlow™ to a collecting
host or summarized within SOFTFLOWD itself.

NFDUMP
version:

1.6.13

The NFDUMP2 tool is used to collect and process NetFlow data on the

command line. They are part of the NfSen project including nfcapd,

NFDUMP, NFPROFILE, NFCLEAN.pl and FT2NFDUMP.

Python

Python 3,

version 3.6.

or greater.

The network architecture and assets repository component is written

mostly in Python 3. The following are the dependences for the

developed component based on Ubuntu 18.04 environment, all of which

are open source packages/libraries: ares0.5, certif2019.3.9, chardet3.0.4,

colorama0.4.1, coreapi2.3.3, coreschema0.0.4, Django2.1.7, django-log-

file-viewer0.9, django-logtailer1.0.1, django-request-logging0.6.7,

django-rest-swagger2.2.0, djangorestframework3.9.2,

djangorestframework-stubs0.4.2, idna2.8, itypes1.1.0, Jinja22.10,

MarkupSafe1.1.1, numpy1.16.2, oauthlib3.0.1, openapi-codec1.3.2,

pandas0.24.2, pyfiglet0.8. post1, PySocks1.6.8, python-dateutil2.8.0,

python-nmap0.6.1, pytz2018.9, requests2.21.0, requests-oauthlib1.2.0,

simplejson3.16.0, six1.12.0, termcolor1.1.0, tqdm4.31.1, tweepy3.7.0,

twitter1.18.0, twython3.7.0, uritemplate3.0.0, urllib31.24.1,

vulners1.4.6.

nmap

Version 7 or

greater.

The nmap3 tool is used for network discovery and security auditing. Nmap

uses raw IP packets in novel ways to determine what hosts are available

on the network, what services (application name and version) those hosts

are offering, what operating systems (and OS versions) they are running,

what type of packet filters/firewalls are in use, and dozens of other

characteristics.

RESTful APIs
Any

The network architecture and assets repository output four main JSON

files.

2.7 Physical architecture
In terms of physical architecture, the following deployment options are used:

• The A16 (network and assets repository architecture) component is deployed as two VMs.

1 https://www.mindrot.org/projects/softflowd/
2 http://nfdump.sourceforge.net/
3 https://nmap.org/

https://www.mindrot.org/projects/softflowd/
http://nfdump.sourceforge.net/
https://nmap.org/

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 17

o The first VM is used for running the open-source software “pfsense4” as a router based on
FreeBSD. pfSense is a popular, state-of-the-art, easy-to-configure open source firewall, VPN,

and router solution. With over 1 million active installations across the world.

o Due to the libraries and resources limitations, the network and assets repository architecture

[A16] core component is deployed in a second VM that is running ubuntu 18.04.2 TLS.

• The network and assets repository architecture is deployed as a Python application with the interface

provided by Django-REST-Framework and RESTful APIs.

• The network and assets repository architecture use the SSH (Secure Shell) to enable secure access to

the pfsense VM and retrieve the required information.

2.8 User Interface
The network assets repository architecture has its own UI, independent of Cyber-Trust’s platform. This
interface is provided by Django-REST-Framework and accessible through the ROOT_URL (on same machine

http://127.0.0.1) (Figure 4). All the REST APIs are accessible from this interface by selecting the type of the

API to be called (Figure 5).

Figure 2-4: Login interface to the network assets repository architecture.

4 https://docs.netgate.com/pfsense/en/latest/

http://127.0.0.1/
https://docs.netgate.com/pfsense/en/latest/

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 18

Figure 2-5: the network assets repository architecture REST APIs interface.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 19

3. Cyber-Defense Service

3.1 Overview / objectives
The Cyber-Defense service (A04) main objective is the detection and mitigation of potential Cyber-attacks on

the networks level as well as at the device levels. The device monitoring is done at the gateway which is

running the Network Intrusion Detection System (NIDS). At this level, a signature-based technique is used to

check for anomalies on a predefined database of signatures from known malicious threats. Similarly, at the

network level, the intrusion detection system is used to monitor the incoming and outgoing network traffic.

The IDS compare the incoming traffic (i.e. packets signatures) against the predefined malware signatures to

identify possible attacks. The signature-based technique is very accurate at detecting known attacks, but

largely ineffective in detecting unknown and new versions of attacks for which there exist no signatures.

Therefore, an AI anomaly detection module is integrated to the NIDS, at the Cyber-Defense service level, as

a second layer in the detection and mitigation process. Figure 3-1 presents the activity diagram of the

detection and mitigation process at the Cyber-Defense service level.

Figure 3-1: Activity diagram of the detection and mitigation process at the Cyber-Defense service level.

3.2 Functionality coverage
The functional coverage of the Cyber-Defense service includes the functional and non-functional

requirements of the component, which are collected from the end-user questionnaires, the state-of-the-art

review of relative technological advanced tools. Other requirements were derived from the operational

requirements of this component in order to be connected with other ??? of apps protocols tools, etc. These

requirements fed the architectural requirements and structured some architectural specifications of the

platform.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 20

3.2.1 Related requirements

The main functional requirements of the Cyber Trust platform related to the Cyber-Defense service are

presented in Table 3-1, while the non-functional requirements are demonstrated in Table 3-2.

Table 3-1: Functional requirements related to the Cyber-Defense service.

ID. FR

Requirement

Description Related

use cases

FR29 In accordance with the relevant legal framework, information regarding

the firmware of the device will be collected, stored and analysed as

forensic evidence that can be used for analysis and in the court of law.

UCG-11-01

FR30 In accordance with the relevant legal framework, critical software files of

the device will be collected, stored and analysed as forensic evidence that

can be used for analysis and in the court of law.

UCG-11-01

FR31 In accordance with the relevant legal framework, information regarding

relevant configurations of the device will be collected, stored and analysed

as forensic evidence that can be used for analysis and in the court of law.

UCG-11-01

FR32 In accordance with the relevant legal framework, Audit logs of the device

will be collected, stored and analysed as forensic evidence that can be used

for analysis and in the court of law.

UCG-11-01

FR33 In accordance with the relevant legal framework, critical OS files of the

device will be collected, stored and analysed as forensic evidence that can

be used for analysis and in the court of law

UCG-11-01

FR34 In accordance with the relevant legal framework, information depicting if

the latest patches have been installed on the device will be collected,

stored and analysed as forensic evidence that can be used for analysis and

in the court of law.

UCG-11-01

FR35 In accordance with the relevant legal framework, network log files will be

collected, stored and analysed as forensic evidence that can be used for

analysis and in the court of law

UCG-11-02

FR36 In accordance with the relevant legal framework, typical volumes of packet

transfer of the network will be collected, stored and analysed as forensic

evidence that can be used for analysis and in the court of law

UCG-11-02

FR37 In accordance with the relevant legal framework, typical protocols of the

network will be collected, stored and analysed as forensic evidence that

can be used for analysis and in the court of law

UCG-11-02

FR38 In accordance with the relevant legal framework, suspicious connections

and services of the network will be collected, stored and analysed as

forensic evidence that can be used for analysis and in the court of law.

UCG-11-02

FR39 In accordance with the relevant legal framework, traffic analysis of the

network will be collected, stored and analysed as forensic evidence that

can be used for analysis and in the court of law

UCG-11-02

FR56 Cyber-Trust will automatically mitigate abnormal behaviour based on the

network map, the characterization of the assets, the impact of the attack

as well as the impact of the mitigation actions. If the mitigation action has

severe impact on certain dimensions of assets that score high value Cyber-

Trust will propose possible actions, but it will not implement it

automatically.

UCG-04-03,

UCG-06-07

FR64 Once a new patch is stored in the respective repository an

alert/notification will be send, through the UI, to the end user of the

respective device.

UCG-07-01

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 21

FR65 The platform will provide functionality so as to enable automatic update

for devices when new patch/firmware is out.

UCG-07-01

FR79 The platform will be capable to restoring a device to a healthy state (i.e. A

device that has been previously compromised is detected to have its health

restored) if one or more vulnerabilities have been mitigated for this device.

UCG-17-01

FR85 For each connected device the Connection rates of the device should be

provided.

UCG-11-01

FR86 For each connected device the MAC address of the device should be

provided.

UCG-11-01

Table 3-2: Non-Functional requirements related to the Cyber-Defense service.

ID. Non-FR

Requirement

Description Related use

cases

NFR7 Users will take the final decisions about appropriate actions based on

the recommendation of Cyber-Trust Platform.

UCG-04-03,

UCG-06-07,

UCG-18-06

NFR8 Regarding the collection, storing and processing of material that may

contain forensic evidences: Data must be kept safe to avoid Integrity

Violations and be backed up for any unfortunate eventualities. An

alternative failover plan will be offered by Cyber-Trust in case of not

having an applicable mitigation action.

UCG-18-01,

UCG-18-06

NFR11 A fully configured failover plan will be proposed by Cyber-Trust to the

users with a set of predefined options.

UCG-18-01,

UCG-18-06

NFR12 In case of important alert, the end-user will have the capability to

update the system/device manually.

UCG-14-01

NFR14 The Cyber-Trust platform must be secure to protect collected data. UCG-04-02,

UCG-04-03

NFR31 Packet information regarding source and destination IP address, source

and destination ports, flags, header length and checksum will be

collected, stored and analysed as forensic evidence that can be used for

analysis and in the court of law.

UCG-08-01

NFR32 Continuous monitoring of the device’s critical OS files to check for
anomalies

UCG-09-01

3.2.2 Related use cases

The use case Scenarios (Presented in D2.3) related to the Cyber-Defense service are presented in Table 3-3,

while, the relationships between each requirement and those use case scenarios are demonstrated in Table

3-1 and Table 3-2.

Table 3-3: Use cases related to the Cyber-Defense service.

Use case

reference

ID

Description

UCG-04-02 Characterize asset’s importance: The user prioritizes the attributes of the devices and their

services according to her preferences.

UCG-04-03 Define mitigation actions’ impact: The security officer quantifies the impact that the various

mitigation actions on the availability of the network resources to trusted devices. This

information, along with the smart home user’s preferences is used to define the utility
function which is required by the iIRS.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 22

UCG-06-07 Communicate iIRS actions to the security officer: The iIRS after computing the optimal

defense action taken by the cyber defense service, it informs the Security officer.

UCG-07-01 Check device patching status: Intelligence regarding the latest versions of firmware is stored

in the Cyber-Trust backend system. Periodically, the installed firmware and software on

monitored devices [A03] is checked and when outdated the end user is notified.

UCG-08-01 Monitor device at the gateway (network traffic filtering): The getaway is running network

intrusion detection systems (NIDS) to check for signatures and anomalies based on

signatures.

UCG-09-01 Monitor device critical OS files / vulnerabilities: The critical OS files/directories are

continuously monitored. They will be scanned for open ports and running processes and

obtained information is synced with the central backend database. In case any attempt is

made in modifying the state of the device, backend services are triggered to check the status

of vulnerability.

UCG-11-01 Gather device forensic evidence: The process of gathering evidence, especially in IoT

environment differs based on the device, it's storage capabilities and software. Therefore,

the collection and storage of forensic evidences (e.g. device log files, timestamps etc.) will be

depicted from the cyber-trust registered devices.

UCG-11-02

Gather network forensic evidence: The process (automatic) and conditions (e.g. with the

identification of an attack) under which the Cyber-Trust will start collecting relevant network

data in order to be used as digital forensic evidences in the court of law as well as the

collection mechanisms/techniques (e.g. DPI).

UCG-14-01

Update device critical OS files / vulnerabilities: In case a legitimate update is performed on

the OS, firmware or any device critical files, key device parameters are recalculated and

updated to the central database. Then the process of detecting vulnerabilities is also

performed.

UCG-17-01

Remediate Device: Restoring a device to a healthy state. Remediation takes place once the

detection of an attack is confirmed meaning that either abnormal device behaviour is

detected. The remediation process involved the isolation of affected files and their recovery

to a previous healthy state or the notification of the end user about advised actions.

UCG-18-01 Apply Mitigation Policy on Device: The decision taken at the network level is applied at the

device level.

UCG-18-06 Define applicable mitigation actions: The Security officer consults the cyber-attack graphical

security model, which contains the system’s security conditions and the available exploits, as
well as their relations, and defines the mitigation actions which are at the iIRS disposal.

3.3 Technology update
The current technology used by the Cyber-Defense service remain the same as indicated in D6.1. No

interesting progress was reported during this period in the area of detection and mitigation techniques.

3.4 Application architecture
The following diagram illustrates the architecture of the Cyber-Defense Service. The architecture follows a

loosely coupled approach allowing for scalability and extensibility where necessary. As shown in Figure 7, the

Cyber-Defense service receives data as input from three other components in the platform including the

Network architecture and assets Repository (A16), the Smart Gateway iIRS app (A13) and the smart gateway

agent (A04g).

• Form the Network architecture and assets Repository service, it receives information on the network

architecture and assets including the flow-matrix (source IP, destination IP, source port, destination

port, protocol, etc.), routing (host-name, destination IP, mask, gateway, interface, etc.), VLANs

(name, IP address, netmask, gateway, etc.) and information about the device (Hostname, interface

name, IP address, connected to wan, etc.).

• From the Smart Gateway iIRS app (A13) it receives as input the trust metric and CT signatures

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 23

• A04 has also access to the real-time security alerts generated by A04g

As output, A04 generates real-time security alerts that will be used by the Smart Gateway iIRS app for

selecting the response actions in real-time to mitigate and block the progression of a cyber-attack on the

network by refusing communication requests, shutting down running services, etc. This component does not

have direct interactions with end-users.

Figure 3-2: High-level design of the Cyber-Defense service.

3.4.1 Suricata IDS

Suricata5 is a high-performance Network IDS, IPS and Network Security Monitoring engine. It was developed

in 2010 by the Open Information Security Foundation (OISF)6 in an attempt to meet the requirements of

modern infrastructures. Suricata Is used by the Cyber-defense service as a signature-based Network IDS that

inspects the network traffic using a powerful and extensive rules and signature language, and a powerful Lua7

scripting support for detection of complex threats. It implements a complete signature language to match on

known threats, policy violations and malicious behaviour. Moreover, it can log HTTP requests, log and store

TLS certificates, extract files from flows and store them to disk. The full pcap capture support allows easy

analysis [1, 2]. All this makes Suricata a powerful engine for the detection and mitigation of potential Cyber-

attacks [2].

This NIDS introduced multi-threading to help speed up the network traffic analysis and overcome the

computational limitations of the single-threaded architecture [2]. It also provides intrusion prevention (NIPS)

and network security monitoring. Unlike Snort, Suricata provides offline analysis of PCAP files by using a PCAP

recorder [3]. It also provides excellent deep packet inspection and pattern matching which makes it more

efficient for threat and attack detection [4]. Many studies assume that Suricata is a powerful adversary to

Snort and thus they are often compared with each other [1, 2].

5 https://suricata-ids.org/
6 https://oisf.net/
7 https://www.lua.org/

https://suricata-ids.org/
https://oisf.net/

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 24

3.4.2 Anomaly Detection module

As illustrated in Figure 6, the anomaly detection module receives traffic that was analyzed by the signature-

based module (Suricata) and considered as normal traffic for further analysis. This module can dynamically

adapt to distinguish between legitimate and malware traffic, especially unknown and new malware. The

alerts http events, DNS events, TLS events and file info are generated through a json file. Its main modules

are the Binary visualisation with Binvis module and the machine learning module.

Figure 3-3: High level design of the anomaly detection module

1. Binary visualisation with Binvis module: This module uses the Binvis8 tool to store the pcap files in

a binary format and then convert them to RGB images. The RGB values mapping is done by comparing

each byte value in the pcap file to their equivalent in the ASCII table, according to the predefined

colour scheme [5]. Binvis divided the different ASCII bytes into four groups of colour, where printable

ASCII bytes are assigned a blue colour, control bytes are assigned a green colour and extended ASCII

bytes are assigned a red colour. Black (0x00) and white (0xFF) colour respectively represent null and

(non-breaking) spaces [5]. After that, the clustering algorithm Hilbert space-filling curve [6] is used

to find the coordinates of each byte colour in the output RGB image. The size of the output RGB

image is 784 (1024*256) bytes. Figure 7 shows Binvis images for normal and malware pcap files,

which are created using the Hilbert space-filling curve clustering algorithm.

8 https://github.com/cortesi/scurve/blob/master/binvis

https://github.com/cortesi/scurve/blob/master/binvis

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 25

Figure 3-4: Output Binvis images for (1) malware pcap files of Lucky Ransomware traffic

2. Machine learning module: This module analyses the produced Binvis images against its in-depth

training dataset to perform the classification of the incoming traffic as normal or malware. Detected

malware traffic will be used to continuously train the classifier in order to enhance their detection

accuracy. Several learning algorithms were used to tests and evaluate the success of the detection

method and determine its accuracy. Table 3-4 presents the overall results of the tests carried out on

a dataset consists of 600 pcap files of normal and malware traffic that are collected from different

network traffic sources.

Table 3-4: Tests results of the anomaly detection module

Machine learning algorithms Accuracy Recall F1-Score

MobileNet 91.32% 91.03% 91.35%

Self-Organizing Incremental Neural Networks (SOINN) 91.70% / /

Residual Neural Network (ResNet50) 91.18% / /

AdaBoost 85.00% 85.00% 85.00%

K-Nearest Neighbours (KNN) 61.00% 54.00% 50.00%

C-Supported Vector Classification (SVC) 71.00% 70.00% 60.00%

Gaussian Process Classifier (GPC) 26.00% 51.00% 34.00%

Decision Tree 72.00% 72.00% 72.00%

Random Forest 77.00% 75.00% 75.00%

Multi-Layer Perceptron 24.00% 49.00% 32.00%

Gaussian Naive Bayes (GaussianNB) 83.00% 81.00% 81.00%

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 26

The Cyber-Defense service also involves the decision making at defending the Cyber-Trust system and limiting

the impact of the imposed threat (e.g. hindering the impostors in accessing the victim devices in the

network); the detection and mitigation service depending on the findings of the analysis determines the most

appropriate mitigation policy to be taken at the device level.

3.4.3 Deep Packet Inspection

The cyber defense service uses Deep Packet inspection for evidence collection. With the identification of an

attack, network forensic evidence gathering is automatically done under specific conditions, where data

collection is restricted to only relevant network metadata that can be used as digital forensic evidence in the

court of law. As shown in Figure 8, Raw data is stored in the “ForensicEvidence” database (off-chain), while

the related has values, timestamps and information regarding the owner of the data will be stored in the DLT

(on-chain).

Figure 3-5: Network evidence collection with Deep Packet Inspection

3.5 Application programming interfaces
Suricata IDS output alerts, http events, DNS events, TLS events and file info into one “eve.json” file, which
will be later processed by other tools like Logstash. EVE can output to multiple methods such as “syslog”,
“unix_dgram”, “unix_stream” and “redis”. It is also possible to have multiple 'EVE' instances. For example,
alerts and drops could go into one instance of the eve.json file, while http, DNS and TLS go into another

instance of this file. Moreover, each log can be handled completely separately. All the JSON log types

generated by Suricata share a common structure, which has a field “event_type” to indicate the log type and
more additional fields if Suricata is processing a pcap file.

{

 "timestamp":"2009-11-24T21:27:09.534255",

 "event_type":"TYPE",

 ...tuple...,

 "TYPE":

 {

 ... type specific content ...

 }

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 27

 }

The following table describes the main output types that could be generated by Suricata in the eve.json file.

Table 3-5: Output types generated by Suricata in the “eve.json” file

JSON log type Description Example of the TYPE section

Alerts Alerts are event records for rule

matches. If the incoming traffic

signature matches with any one of

the existing signatures (rules), it is

considered as malicious and an

alert JSON log will be generated in

the eve.json file.

The action parameter is set to

“allowed” unless a rule used the
“drop” action and Suricata is in IPS

mode, or when the rule used the

“reject” action.

"alert":

 {

 "action": "allowed",

 "gid": 1,

 "signature_id": 1,

 "rev": 1,

 "app_proto": "http",

 "signature": "HTTP body talking about corruption"

 "severity": 3,

 "source": {

 "ip": "192.168.43.32",

 "port": 36292

 },

 "target": {

 "ip": "179.60.192.3",

 "port": 80

 },

http events It mainly provides information

about http events in the network,

which may include the hostname

this HTTP event is attributed to,

the URL at the hostname that was

accessed, the user-agent of the

software that was used and the

type of data returned (ex:

application/x-gzip, “cookie”).

"http":

 {

 "http_port": 1337,

 "hostname": "www.digip.org",

 "url" :"\/jansson\/releases\/jansson-2.6.tar.gz",

"http_user_agent": "<User-Agent>",

"http_content_type": "application\/x-gzip"

 }

DNS events It mainly provides information

about a DNS event, which may

include the type of the DNS

message (answer or query), DNS

logging version in use, DNS answer

flag, in hexadecimal (ex: 8180), the

Resource Record Name (ex: a

domain name), Resource Record

Type (ex: A, AAAA, NS, PTR),

Resource Data (ex. IP that domain

name resolves to) and the Time-

To-Live for this resource record.

Example of a DNS query for the IPv4 address of

“twitter.com” (resource record type ‘A’):

"dns":
 {
 "type": "query",
 "id": 16000,
 "rrname": "twitter.com",
 "rrtype":"A"
 }

TLS events It provides information about TLS

events in the network that may

include the subject and issuer

fields from the TLS certificate, TLS

session was resumed via a session

ID or not, the serial number and

fingerprint of the TLS certificate,

SSL/TLS version used, etc.

"tls":

 {

 “subject”: “C=US, ST=Californai, L=Mountain
View, O=Google Inc, CN=*.google.com",

 "issuer": "C=US, O=Google Inc, CN=Google

Internet Authority G2”

 "session_resumed": true,

 "serial": "0C:00:99:B7:D7:54:C9:F6:77

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 28

 : 26: 31:7E:BA:EA:7C:1C",

 "fingerprint": "8f:51:12:06:a0:cc:4e:cd:e8:a3:8b

 :38:f8:87:59:e5:af:95:ca:cd",

 "version": "TLS 1.2"

 }

3.6 Technology Stack
The following table provides a detailed description of the tools used in the development of the Cyber-defense

service.

Table 3-6: Technology stack of the Cyber-Defense service.

Tool Version Description

Elastic search

RESTful API

Any The Elastic search9 is used for storing and sharing all log files provided by

Suricata IDSs at the Smart Gateway Agent (SGA) level and the ISP level. It

provides scalable search, has near real-time search, and supports

multitenancy.

Logstash

Any

Logstash 10is an open source, server-side data processing pipeline that

ingests data from a multitude of sources simultaneously, transforms it,

and then sends it to your favorite "stash." It is used by the Cyber-defense

service as a data processing pipeline that retrieves data from a multitude

of sources simultaneously (Suricata EVE log files), transforms it, and then

sends it to Elastic search.

Python Version 6.3

or greater

The anomaly detection module is written in Python. This module deals

with unknown attacks, for which there is no signatures.

Lua scripting

language Any

Suricata IDS support rules (or signatures) written in the embeddable

scripting language Lua. This language is mainly used to read, adjust and

create new rules (signatures).

Kibana
Any

The visualisation tool Kibana11 is used with Elastic search to provide a 2D

visualisation of the results in the Suricata log file.

Filebeat

Any

Filebeat is used to forward and centralise the collection of the eve log

files generated by Suricata IDSs at the Smart Gateway Agent (SGA) level

in the ISP level.

EveBox
Any

Evebox is a web frontend that is used to display the Suricata alerts after

being processed by Elastic search.

3.7 Physical architecture
In terms of physical architecture, the Cyber defense service is deployed as a single VM, running the Suricata

IDS and the anomaly detection module based on Debian GNU/Linux 10.2. Suricata is installed and configured

as Intrusion Detection System (IDS) with a specific set of rules (or signatures). Elasticsearch, Logstash, Kibana,

EveBox and Filebeat are installed in the same VM and configured to handle the EVE JSON logs produced by

Suricata.

The integration of the anomaly detection module with Suricata is achieved by passing 10MB PCAP files

retained within SELKS '/data/nsm/' directory through the anomaly detection module, detection is then

performed on the Binvis output images and when the network traffic is determined to be 'malware' the

stored network information for that block is outputted to eve.json using the documented json format in

(https://suricata.readthedocs.io/en/suricata-5.0.0/output/eve/eve-json-format.html). Malware detected

9 https://www.elastic.co/
10 https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
11 https://www.elastic.co/guide/en/kibana/current/introduction.html

https://suricata-ids.org/
https://www.lua.org/
https://suricata.readthedocs.io/en/suricata-5.0.0/output/eve/eve-json-format.html
https://www.elastic.co/
https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html
https://www.elastic.co/guide/en/kibana/current/introduction.html

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 29

images are then outputted to the anomaly detection module's log file in '/var/log/malwaresquid/' for further

processing and analysis, the alert data is then read by EveBox and treated the same way as Suricata's alerts.

3.8 User Interface
In addition to the visualisation interface provided by the Cyber-Trust’s platform, the cyber defense service

outputs could be also visualized by using Kibana with Elastic search, independent of Cyber-Trust’s platform.
With this interface, users and officers have the possibility to get details about all the events (stats, flow, DNS,

fileinfo, http, tls, dhcp, alert, etc.) generated by the cyber the Cyber-Trust’s platform as well as general

statistics about the alerts detected along with timeline graphs of generated events over time (e.g. alerts

count, Alerts categories, Alerts details, Alerts, locations, Alerts top 10 signatures, Alerts top 10 source &

destination ports, Alerts top source & destination IPs, alerts by information type (SSH alert, SMTP alert, TLS

alert, SMB alert, DNS alerts, other Alerts), etc. more details will be provided in deliverable D6.4. Figures 11

and 12 illustrates Kibana dashboards, which show information from the Suricata IDS EVE log file.

Figure 3-6: Visualisation of information from the Suricata IDS EVE log file through Kibana dashboard.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 30

Figure 3-7:Kibana Alert dashboard.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 31

4. Smart Gateway Module

4.1 Overview / objectives
The Smart Gateway Agent (SGA) main objectives are the monitoring of network traffic, and the computation

and application of mitigation policies and remediation actions. SGA ensures the following functionalities:

• Continuous Monitoring at the gateway (network traffic filtering) to check for signatures and

anomalies based on the signature and report of the attack is issued to the responsible security officer,

capture and classify network packets (DPI) and traffic profiling for each device.

• Discovery & Intelligence of ongoing attacks on the network level.

• Ensure mitigation and communication by defining mitigation policies and parameters, computing

mitigation policies and attack surface, computing and delivering of trust and risk assessments. It

communicates the received intrusion detection alerts to the user.

• Enforce Network Mitigation by applying then mitigation and remediation actions as necessary when

an attack is detected.

• Store of trust information in Database to be later retrieved and processed or returned as a response

to queries. The SGA also includes the component A13 that realizes the intelligent intrusion response

system(iIRS), which is presented in the next section.

4.2 Functionality coverage
The functional coverage of the Smart Gateway Agent (SGA) includes the functional and non-functional

requirements of the components A03g, A04g, A05g, A08g and A11, which are collected from the end-user

questionnaires, the state-of-the-art review of relative technological advanced tools. Other requirements

were derived from the operational requirements of this component in order to be connected with other of

apps protocols tools, etc. These requirements fed the architectural requirements and structured some

architectural specifications of the platform.

4.2.1 Related requirements

The main functional requirements of the Cyber Trust platform related to the Smart Gateway Agent (SGA) are

presented in Table 4-1, while the non-functional requirements are demonstrated in Table 4-2.

Table 4-1: Functional requirements related to the Smart Gateway Agent (SGA).

ID. FR

Requirement

Description Related use

cases

FR1 For each connected device the Type of Device must be provided UCG-04-01

FR2 For each connected device the Vulnerabilities of the device must be

provided

UCG-04-01

FR3 For each connected device the Open Ports of the device must be provided UCG-04-01

FR9 Every device connected to the Cyber-Trust platform has visual

representation of the Trust level (scoring) before the identification of

abnormal behavior (e.g. cyber-attack)

UCG-05-07,

UCG-05-05

FR10 Every device connected to the Cyber-Trust platform has visual

representation of the Trust level (scoring) during abnormal behaviour (e.g.

cyber-attack).

UCG-05-07,

UCG-05-05

FR11 Every device connected to the Cyber-Trust platform has visual

representation of the Trust level (scoring) after the mitigation of any

abnormal behavior (e.g. cyber-attack).

UCG-05-07,

UCG-05-05

FR19 In case of vulnerabilities detected on a device, the Cyber-Trust platform

will inform users by alert messages.

UCG-06-01,

UCG-06-02,

UCG-16-03,

UCG-18-04

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 32

FR20 In case of vulnerabilities detected on the device, the Cyber-Trust platform

will inform users, by alert icons.

UCG-06-01,

UCG-06-02,

UCG-16-03,

UCG-18-04

FR21 The user will be informed for the importance of the alert based on the

overall Score of the device (it will be derived based on the abnormal

behaviour, detected vulnerabilities etc.)

UCG-06-01,

UCG-06-02,

UCG-13-01,

UCG-16-03

FR29 Information regarding the firmware of the device will be collected, stored

and analysed as forensic evidence that can be used for analysis and in the

court of law.

UCG-11-01

FR30 Critical software files of the device will be collected, stored and analysed

as forensic evidence that can be used for analysis and in the court of law.

UCG-11-01

FR31 Information regarding relevant configurations of the device will be

collected, stored and analysed as forensic evidence that can be used for

analysis and in the court of law.

UCG-11-01

FR32 Audit logs of the device will be collected, stored and analysed as forensic

evidence that can be used for analysis and in the court of law.

UCG-11-01

FR33 Critical OS files of the device will be collected, stored and analysed as

forensic evidence that can be used for analysis and in the court of law.

UCG-11-01

FR34 Information depicting if the latest patches have been installed of the

device will be collected, stored and analysed as forensic evidence that can

be used for analysis and in the court of law.

UCG-11-01

FR35 Network log files will be collected, stored and analysed as forensic

evidence that can be used for analysis and in the court of law.

UCG-11-02

FR36 Typical volumes of packet transfer of the network will be collected, stored

and analysed as forensic evidence that can be used for analysis and in the

court of law.

UCG-11-02

FR37 Typical protocols of the network will be collected, stored and analysed as

forensic evidence that can be used for analysis and in the court of law

UCG-11-02

FR38 Suspicious connections and services of the network will be collected,

stored and analysed as forensic evidence that can be used for analysis and

in the court of law.

UCG-11-02

FR39 Traffic analysis of the network will be collected, stored and analyses as

forensic evidence that can be used for analysis and in the court of law.

UCG-11-02

FR43 Deep Packet Inspection: MAC address of source packet UCG-08-02

FR44 Deep Packet Inspection: MAC address of destination packet UCG-08-02

FR45 Deep Packet Inspection: IP of source address UCG-08-02

FR46 Deep Packet Inspection: Information derived from capturing and analyzing

the payload

UCG-08-02

FR47 Deep Packet Inspection: Destination port of the packet UCG-08-02

FR48 Deep Packet Inspection: The packets will be characterized and classified

into various categories such as benign, anomaly, suspected

UCG-08-02

FR56 Cyber-Trust will automatically mitigate abnormal behaviour based on the

network map, the characterization of the assets, the impact of the attack

as well as the impact of the mitigation actions. If the mitigation action has

severe impact on certain dimensions of assets that score high value Cyber-

Trust will propose possible actions, but it will not implement it

automatically.

UCG-04-03,

UCG-06-07

FR61 Statistics regarding the network traffic will be visualised in the monitoring

service (2D).

UCG-06-03

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 33

FR85 For each connected device the connection rates of the device should be

provided.

UCG-11-01

FR86 For each connected device the MAC address of the device should be

provided.

UCG-11-01

FR91 Deep Packet Inspection: Number of hops from source to destination (TTL

– Time To Live mechanism).

UCG-08-02

Table 4-2: Non-Functional requirements related to the Smart Gateway Agent (SGA).

ID. Non-FR

Requirement

Description Related use

cases

NFR31 Packet information regarding source and destination IP address, source

and destination ports, flags, header length and checksum will be collected.

UCG-08-01

NFR32 Continuous monitoring of the device’s critical OS files. UCG-09-01

NFR40 iIRS will use the alerts raised by the IDS in order to update the belief it

possesses over the system security state.

UCG-15-04

NFR41 The monitoring service will be comparing the hash information from the

device’s critical files and the values provided by the device information
management system, continuously.

UCG-16-01

NFR48 Regarding the collection, storing and processing of material that may

contain forensic evidences: ISO 27001 controls (A.5 Security policy, A.6

Organization of information security, A.7 Asset management, A.8 Human

resources security, A.9 Physical and environmental security, A.10

Communications and operations management, A.11 Access control, A.12

Information systems acquisition, development and maintenance, A.13

Information security incident management, A.14 Business continuity

management, A.15 Compliance,).

4.2.2 Related use cases

The use case Scenarios (Presented in D2.3) related to the smart Gateway Agent are presented in Table 4-3,

while, the relationships between each requirement and those use case scenarios are demonstrated in Table

4-1 and Table 4-2.

Table 4-3: Use cases related to the Smart Gateway Agent (SGA).

Use case

reference ID

Description

UCG-04-01 Private IoT Device Profile generation: Implementation of one-way cryptographic hash

functions to pseudonymise data and secure multi-party communications for anonymous

data distribution.

UCG-04-02 Characterize asset’s importance: The user prioritizes the attributes of the devices and

their services according to her preferences.

UCG-04-03 Define mitigation actions’ impact: The security officer quantifies the impact that the

various mitigation actions have on the availability of the network resources to trusted

devices (e.g. by refusing communication requests, shutting down running services, etc.).

This information, along with the smart home user’s preferences is used to define the
utility function which is required by the iIRS.

UCG-05-05 Visualize device vulnerability levels: The level of vulnerability of the devices targeted is

presented in 2D OMCP.

UCG-05-07 Visualize device trust level: The level of trust of the devices targeted is presented in 2D

OMCP

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 34

UCG-06-01 Raise alert for security officer: Raise an alert to intelligent UI user when for example,

there is a mitigation policy to be applied as a response to a threat originated from IoT

device.

UCG-06-02 Raise alert for device owner: Raise an alert to user when for example, there is a threat is

detected in one of the owners’ s IoT devices.
UCG-06-03 Establish baseline traffic statistics: Traffic statistics of the network will be displayed

on the 2D Monitoring and Control Panel (MCP) in order to allow ISP operator in being

aware about the situation

UCG-06-07 Communicate iIRS actions to the security officer: The iIRS after computing the optimal

defense action (Cyber Defense service), it informs the Security officer.

UCG-08-01 Monitor device at gateway (network traffic filtering): The getaway is running network

intrusion detection systems (NIDS) to check for signatures and anomalies based on

signature.

UCG-08-02 Capture and classify network packets (DPI): The system automatically captures and

classify the packets based on their contents; this can be achieved using Deep Packet

Inspection (DPI) approach. The DPI will characterize the packets into various categories

such as benign, anomaly, suspected.

UCG-09-01 Monitor device critical OS files / vulnerabilities: The critical OS files/directories are

continuously monitored. They will be scanned for open ports and running processes and

obtained information is synced with the central backend database. In case any attempt is

made in modifying the state of the device, backend services are triggered to check the

status of vulnerability.

UCG-11-01 Gather device forensic evidence: The process of gathering evidence, especially in IoT

environment differs based on the device, it's storage capabilities and software. Therefore,

the collection and storage of forensic evidences (e.g. device log files, timestamps etc.) will

be depicted from the cyber-trust registered devices.

UCG-11-02 Gather network forensic evidence: The process (automatic) and conditions (e.g. with the

identification of an attack) under which the Cyber-Trust will start collecting relevant

network data [A03] in order to be used as digital forensic evidences in in the court of law

as well as the collection mechanisms/techniques (e.g. DPI).

UCG-15-04 Compute a belief on current security status: The iIRS uses the alerts provided by the

intrusion detection system to update the belief it has about the system security state. The

belief is a probability distribution over the possible security states, which are comprised

of the system security conditions. These conditions denote system attributes (e.g. active

services (and the associated vulnerabilities), network connectivity, trust relationships

between hosts, and attacker privileges on hosts) and represent attacker’s capabilities.
UCG-16-01 Determine device firmware and software through remote detection: A backend service

runs between the device and central device profile database to identify device’s firmware
and software thereby building and updating the central database with all firmware. As a

result, the system can be able to generate metrics such as vulnerability and trust.

UCG-16-03 Receive intrusion detection system(s) alerts: In case of an attack discovery, or a false

alarm event, the intrusion detection system is activated and generates alerts and informs

the iIRS . The iIRS evaluates the generated alerts in order to infer the true system security

state, by considering the possible mis detections and false alarms.

UCG-18-04 Notify of device compromise: Describe the procedure the system will use in case of a

comptonization of a device.

4.3 Technology update
The current technology used by the Smart Gateway Agent remain the same as indicated in D6.1. No

interesting progress was reported during this period.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 35

4.4 Application architecture
The following diagram illustrates a high-level architecture of the smart Gateway Agent module. The

architecture follows a loosely coupled approach allowing for scalability and extensibility where necessary. As

shown in Figure 9, A04g receives data as input from other components in the platform including the Network

architecture and assets Repository (A16), the Smart Gateway iIRS app (A13). A04g has also access to the real-

time security alerts generated by A04g.

As output, A04g generates real-time security alerts that will be used by A13 for selecting the response actions

in real-time to mitigate and block the progression of a cyber-attack on the network by refusing

communication requests, shutting down running services, etc.

Figure 4-1: High-level Architecture of the Smart Gateway Agent

4.5 Application programming interfaces
The Smart Gateway Agent exposes a set of REST APIs for direct invocation by other Cyber-Trust modules. It

additionally employs a loose coupling communication pattern, through the exchange of messages via the

message bus; the respective messages consumed through the message bus will be elaborated on in the

context of WP8. Table 4-4 shows the output generated by A04g component inside the smart gateway agent.

Other APIs exposed by other components (A03g, A05g and A08g) are described in D5.3.

Table 4-4: Output generated by A0g

API

Description Example response (JSON file)

A04g JSON EVE log Suricata IDS in A04g output alerts, http events, DNS events, TLS events and file info

into one “eve.json” file, which will be later processed by other tools like Logstash
as described in section 3.5.

4.6 Technology Stack
The following table provides a detailed description of the tools used in the development of the Cyber-defense

service.

Table 4-5: Technology stack of the Cyber-Defense service.

Tool Version Description

Suricata IDS

Any A light version of Suricata Is used in the Smart Gateway Module as a

signature-based Network IDS that inspects the smart home network

traffic using a specific set of rules /signatures, and a powerful Lua scripting

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 36

support for detection of complex threats. It implements a complete

signature language to match on known threats, policy violations and

malicious behaviour. Moreover, it can log HTTP requests, log and store

TLS certificates, extract files from flows and store them to disk. The full

pcap capture support allows easy analysis. All this makes Suricata a

powerful engine for the detection and mitigation of potential Cyber-

attacks.

Elastic search

RESTful API

Any The Elastic search is used for storing and sharing all log files provided by

Suricata IDSs at the Smart Gateway Agent (SGA) level and the ISP level. It

provides scalable search, has near real-time search, and supports

multitenancy.

Logstash

Any

Logstash is an open source, server-side data processing pipeline that

ingests data from a multitude of sources simultaneously, transforms it,

and then sends it to your favorite "stash." It is used by the Cyber-defense

service as a data processing pipeline that retrieves data from a multitude

of sources simultaneously (Suricata EVE log files), transforms it, and then

sends it to Elastic search.

Python
Version 6.3

or greater

In the development of the SGA, we used the following Python 3.6

libraries; SQL Alchemy, Flask, Numpy, Scipy, Sympy, Cython, Sklearn,

Networkx, Pandas.

Lua scripting

language Any

Suricata IDS support rules (or signatures) written in the embeddable

scripting language Lua. This language is mainly used to read, adjust and

create new rules (signatures).

Filebeat

Any

Filebeat is used to forward and centralise the collection of the eve log

files generated by Suricata IDSs at the Smart Gateway Agent (SGA) level

in the ISP level.

4.7 Physical architecture
In terms of physical architecture, A single VM is used for running a light version of Suricata IDS (i.e. A04g

component) with a specific set of rules (or signatures) that is related to the smart home devices. The VM is

running ubuntu 18.04.2 LTS. This VM is used as an IDS for the pfsense router that is deployed in another VM

due to libraries and resource limitations. A04g use the SSH (Secure Shell) to enable secure access to the

pfsense VM and retrieve the required information.

https://suricata-ids.org/
https://www.lua.org/

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 37

5. Data representation integrated in the Cyber-Trust Interface
The modules responsible for the development of threat detection and mitigation tools provide the Cyber-

Trust platform with a lot of important data, characterized by different formats and qualities, as well as at a

level of information that they are able to transmit to the user.

The graphic management in the UI of this type of data requires the use and design of ad hoc forms of

representation, in order not to make the decoding of this data too complex and not very immediate.

The choice of the types of graphic representation mainly concerns the type of data (e.g. qualitative or

quantitative data, time series, punctual data, geographic data). For each typology the possible representation

scenarios have been identified, always following the principle of optimizing the readability and usability of

the data.

Furthermore, for the correct decoding of information and its use by users, it was necessary to make it possible

to apply filters on these: the applicable filters include the selection of a time window (by setting the start and

end date and time of selection). Figure 14 shows a data representation already integrated in the Cyber-Trust

UI.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 38

Figure 5-1: Data representation integrated in Cyber-Trust UI

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 39

6. Intelligent intrusion response system

6.1 Overview / objectives
In this chapter, we describe the operation and objectives of the Intelligent Intrusion Response (iIRS, A13)

system. The objective of the iIRS is the real-time computation of mitigation actions that could be employed,

with or without user interaction, against sophisticated network attacks. Our design of iIRS is based upon the

model proposed in [KN1].

In doing so, the iIRS interacts with other system modules. More specifically, the iIRS receives as input the

attack graphical security model, which represents the interconnection between exploits and the security

attributes of both network devices and their provided services (the capabilities an attacker has and might

acquire), to build the state space. To aid in optimization of the defense actions and to maximize the user’s
satisfaction, various attributes about the network devices and their provided services may be taken as input

by the iIRS. Then, the iIRS computes the response actions, which are given as input to the IDS.

Here, we focus on the interaction between the iIRS and the Intrusion Detection System (IDS, A04g). For more

details regarding the interaction of iIRS with other system modules, the interested reader can refer to

Deliverable D5.3.

6.2 Cooperation with IDS and Network Repository
The interactions between iIRS and IDS are of critical importance and are shown schematically in Fig. 10 The

state space represents security conditions. Since we want to study the problem in a realistic setting, where

erroneous alerts about the true system state can occur, we consider partial observability in the problem

study, following the work presented in [KN1].

More specifically, the iIRS takes as input security alerts by the IDS, which do not necessarily represent the

true underlying state, to update its belief about the security state. However, security alerts are subject to

false alarms and miss-detections. This fact is taken into account by the iIRS, which utilizes the respective

probabilities of miss-detection and false alarm in order to update the belief vector about the current system

state. Then, the iIRS solves the Partially Observable Markov Decision Process (POMDP) to provide the optimal

response actions to the IDS. These actions are in form of firewall rules.

Figure 6-1: High-level illustration of cooperation between the iIRS and IDS

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 40

7. Conclusion
This document shows the current status of the Proactive Technology tools to be integrated into an

operational environment. The integrated prototype will be piloted and tested in Task T8.3 and needed

adaptations, further to the evaluation of the test will be performed.

 D6.3 CYBER-TRUST network tools

Copyright Cyber-Trust Consortium. All rights reserved. 41

8. References

1. Brumen, Boštjan, and Jernej Legvart. "Performance analysis of two open source intrusion detection
systems." 2016 39th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO). IEEE, 2016.

2. Isa, Fuad Mat, et al. "Comprehensive Performance Assessment on Open Source Intrusion Detection

System." Proceedings of the Third International Conference on Computing, Mathematics and

Statistics (iCMS2017). Springer, Singapore, 2019.

3. Albin, Eugene, and Neil C. Rowe. "A realistic experimental comparison of the Suricata and Snort

intrusion-detection systems." 2012 26th International Conference on Advanced Information

Networking and Applications Workshops. IEEE, 2012.

4. Svoboda, Jakub. "Network Traffic Analysis with Deep Packet Inspection Method." Fac. Informatics

Masaryk Univ., no. Master’s Thesis (2014).

5. Robert Shire, Stavros Shiaeles, Keltoum Bendiab, Bogdan Ghita, Nicholas Kolokotronis. “Malware

Squid: A Novel IoT Malware Traffic Analysis Framework Using Convolutional Neural Network and

Binary Visualisation”. In: Internet of Things, Smart Spaces, and Next Generation Networks and
Systems. Springer, Cham, 2019. p. 65-76. DOI https://doi.org/10.1007/978-3-030-30859-9_6.

6. Sagan, Hans. "Hilbert’s space-filling curve." Space-filling curves. Springer, New York, NY, 1994. 9-30.

7. E. Miehling, M. Rasouli, and D. Teneketzis, “A POMDP approach to the dynamic defense of large-scale

cyber networks,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 10, pp. 2490-2505,

2018.

https://doi.org/10.1007/978-3-030-30859-9_6

