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Executive summary 

Cyber-Trust project aims at developing an innovative platform tackling the grand challenges in securing the 

IoT ecosystem. To this end, a distributed ledger technology (DLT) is being appropriately used to ensure the 

robustness of threat detection and mitigation methods and provide a tamper-resistant environment that is 

suitable for the forensic evidence collected (from the devices and the network) as regards to alleged cyber-

criminal behavior. This report aims to present and analyze the security of Cyber-Trust’s DLT solution. More 

precisely, important security issues that arise in the development and operation of Hyperledger Fabric DLT 

are being considered, driving the implementation/configuration approaches that need to be adopted. The 

security threats covered by the present deliverable are classified into the following areas covering pretty 

much all the aspects of any DLT solution: (a) consensus security; (b) smart contract security; (c) software 

security; and (d) network security. In addition, to the above, privacy issues are also being considered under 

the same context. In each area, a number of alternative threat mitigation options have been identified, which 

are classified into those that have already (by design, or during the implementation) been implemented by 

the project, those that will be used (e.g. the choice of the consensus, or the use of IDS), and those that seem 

to be quite promising and could be further explored in future research efforts. 
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1. Introduction 

The Cyber–Trust project aims to develop an innovative cyber–threat intelligence gathering, detection, and 

mitigation platform to tackle the grand challenges towards securing the ecosystem of IoT devices. To this 

end, a DLT is being appropriately used by the Cyber-Trust system, in order to play a decisive role in ensuring 

robustness to the detection and mitigation methods and provide a high-integrity and tamper-resistant 

environment that is suitable for the forensic evidence collected (from both the devices and the network in 

case of alleged cyber-criminal activities) as regards to alleged cyber-criminal behavior. The DLT also provides 

transparency in the context of the Cyber-Trust system, by allowing check the history of communications 

between organizations/LEAs that interact with the Cyber-Trust system (i.e. for establishing a chain of custody, 

so as to verify all previous communications). 

As stated and justified in D7.2 [68], the choice of the relevant DLT technology with respect to the Cyber-Trust 

system is the Hyperledger Fabric. 

1.1 Purpose of the document 

This report aims to present in detail the security framework regarding the DLT in the Cyber-Trust system. 

More precisely, the present report considers important security issues that arise in developing and operating 

the DLT within the framework of the Cyber-Trust system. This security analysis is very important, towards 

making appropriate choices in the implementation/configuration approach that will be adopted, taking into 

account that security should be part of the design process and not considered afterwards. In addition, apart 

from security issues, privacy issues are also being considered under the same context. This deliverable 

constitutes a first security analysis report; a complementary version will be submitted in M30 that will be 

focusing more on cryptographic aspects. 

1.2 Relations to other project activities 

In D7.1 [67], we have analyzed the general security and privacy properties that any blockchain mechanism 

should have. In addition, the architecture of the DLT that has been chosen to be incorporated in the Cyber-

Trust system is being described in D7.2 [68]; as stated therein, the Hyperledger Fabric constitutes the proper 

choice, taking into account the Cyber-Trust system’s requirements, as well as the inherent features of the 

Hyperledger Fabric. Therefore, the present document performs a security and privacy analysis on the 

architecture described in D7.2, taking into account the general requirements stemming from D7.1. 

Moreover, D7.5 presents a technical documentation of the prototype of the DLT implementing the forensic 

evidence, focusing also on measures that are to be taken in order to ensure compliance with the relevant 

legal framework [69]. Therefore, D7.5 also provided input to the present document, since specific 

implementation decisions have been taken therein. 

Regarding privacy issues, D3.3 [66] sets some requirements that need to be fulfilled by the Cyber-Trust 

system, including – amongst others – the specific case of the DLT architecture. Hence, the present report 

takes into account the requirements presented in D3.3, in order to assess the conformity of the process 

performed by the DLT with the data protection legal provisions. 

The implementation decisions stemming from this deliverable will provide significant input to the task T8.2 

(platform integration and testing), which is related with the integration of all the tools into an operational 

environment that will provide the required services, as well as – as a clear consequence – to the task T8.3 

concerning the pilot execution. 
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1.3 Structure of the document 

This document consists of seven sections, including the current introductory section. More precisely, the 

structure of the document is as follows: 

▪ Section 2 describes the generic security model of the Hyperledger Fabric, presenting all security goals 

as well as the vulnerabilities that need to be addressed. Some implementation decisions that have 

been already taken, due to the analysis performed in previous deliverables, are also briefly described. 

▪ Sections 3-5 focus on specific types of security threats, aiming to provide a concrete analysis with the 

ultimate goal to take appropriate implementation\configuration decisions to alleviate these issues. 

More precisely: 

o Section 3 focuses on threats that are related with the underlying consensus mechanism. 

o Section 4 focuses on threats that are related with the smart contract’s security. 

o Section 5 focuses on threats that are related with software and network security. 

In all cases, all relevant threats are being presented, whereas mitigation measures that are to be 

adopted are also concluded. 

▪ Section 6 focuses on privacy issues, presenting all the relevant personal data protection risks that 

may occur and presenting how the Cyber-Trust DLT manages to resolve them. 

▪ Finally, the main conclusions obtained are summarized in Section 7. 
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2. Hyperledger Fabric 

Prior DLTs follow the order-execute architecture, in which the transactions are ordered first, via the 

consensus protocol and they are executed in sequence on each peer. This model has several limitations (see 

Deliverable D7.2) from which several threats and risks may arise.  Fabric follows the execute-order-validate 

architecture (illustrated in Figure 2-1 along with the architecture of other DLTs) for executing untrusted code 

in adversarial environments. 

 

Figure 2-1: The common architecture (above) – The Fabric’s architecture (below) 

Hyperledger Fabric divides the transaction flow into the following phases: a) execution, in which a transaction 

is sent to the peers, it is simulated and as a result of this simulation the rw-set is created1 ― when the 

simulation is finished, the endorsing peer creates an endorsement and sends it to the client; b) ordering, in 

which the consensus process occurs; and c) validation, which is the last phase before the update of the ledger 

and in which the transactions are validated not from the consensus nodes but from the peers. 

2.1 Fabric’s CA security model 

The data that is stored on Fabric – especially the integrity of the data – can be considered secure by the 

concept of the BT itself or by the implementation of the smart contracts. However, there are prerequisites 

to make the previous statement valid. The first one is the security at the network level which can be ensured 

by means of the Hyperledger Fabric CA, see Figure 2-2:. Fabric’s CA, which is responsible for the renewal of 

the certificates, provides the registration and authentication of actors inside the network i.e. the LEAs or the 

ISPs in the context of Cyber Trust’s blockchain. 

 
1 rw-set is the read-set, which is comprised of the dependencies (key, ver) along with the write-set comprised of 

the state updates (key, val). 
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Figure 2-2:Fabric’s CA architecture2 

The central point of the architecture is the Fabric-CA Intermediate Server, which is actually a proxy towards 

the actual server responsible of the CA. It is significant to note that the Fabric-CA Intermediate Server can 

be a standalone server but it is not recommended for an optimal security of the DLT. Clients can communicate 

through the Fabric’s SDK or the Fabric-CA client by means of the REST API. 

At the host level, it is recommended to use data encryption. Fabric provides a native encryption to protect 

the stored data, which can be deactivated at any time. It is recommended to use encryption at the disk level. 

2.2 Security Goals of Hyperledger Fabric 

In Deliverable 7.1, we have analyzed the security properties that a blockchain mechanism should have [19] 

[20], namely: Common-prefix, chain-quality, chain-growth, and liveness. In this section, it is presented how 

these properties are applied in the DLT that we have chosen, i.e. The Hyperledger Fabric [1]. 

The common-prefix (i.e. consistency) is the most critical security property for blockchains and defines that 

all the local chains of the correct participants have a common prefix, which means that the first blocks are 

the same in each participant’s local chain. Fabric satisfies this property, since the peers on a channel maintain 

the same ledger. 

The chain-quality property defines an upper bound on the percentage of the blocks that have been formed 

by malicious parties. Generally, each block is created by a single entity and thus, the blocks can be marked as 

malicious or correct. However, Fabric cannot be considered amenable or vulnerable to this property due to 

 
2 https://fabric-ca-2.readthedocs.io/en/latest/users-guide.html 

https://fabric-ca-2.readthedocs.io/en/latest/users-guide.html
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the fact that the batching of a transactions into a block, each bock’s creation and signing, as well as, its 

dissemination it to the peers is taking place by all the OSNs in the cluster [15]. 

The liveness property defines that all transactions that derive from correct clients will be ultimately added to 

the blockchain. In Fabric, all the transactions are included into the ledger by the OS and then marked as 

malicious or correct. 

The chain-growth property defines that as the time elapses the local chains of the correct peers will not stop 

growing, but this property is necessary only for blockchains that follow the LCR. In such DLTs, if the local 

chains of the correct peers stop growing, the network can be vulnerable to several attacks, such as double-

spending, long range, etc. In such attacks, the malicious nodes, by creating an alternative longer chain, 

attempt to deceive the network and change a part of the ledger’s history (See Section 2.3 for further details). 

In Fabric, all the transactions are stored in the world state and only the peers, in which a specific chaincode 

is installed, are the only entities capable to mark these transactions. 

Apart from the chain-quality property, which is suitable to permissionless blockchains, Fabric does not also 

satisfy the common-prefix property in the presence of malicious behavior. For instance, an adversarial cluster 

can disseminate transactions to multiple OSNs in a different order. Thus, the blocks that the OSNs create 

from these transactions might not be the same and alternative states might occur. Even if the Kafka or the 

Raft cluster operates correctly, other security issues may arise. A violation of the common prefix property 

can occur if the OSNs are corrupted and deliver malicious blocks to multiple peers. Such behavior can be 

devastating in permissionless and anonymous networks, but in Fabric such actions are identified. 

While, the common-prefix property cannot be satisfied in the presence of malicious behavior, accountability 

is a concept that makes the peers and the OSNs accountable for their actions. In Cyber-Trust case, if a 

malicious activity is detected, the participant who has performed this malicious action is further investigated 

and appropriate mitigation measures are being taken (e.g. removal from the Cyber-Trust’s DLT environment, 
other measures as dictated by EU and national laws, etc.). Specifically, if the common-prefix property is not 

satisfied, which means that if some malicious actions occur in the execution of the protocol; it is possible to 

identify and hold accountable the parties who misbehave. Such entities could then face image loss or 

punishment, which averts them from performing such actions in the first place. Therefore, it is possible to 

ensure that the common-prefix property either holds or it is possible to hold accountable one or more entities 

that violated this property. 

However, any violation of the liveness and the chain-growth is not so devastating in Fabric, since none of 

these properties can ensure agreement [19]. In a real world scenario, if the OSN, the peers or the Raft/Kafka 

cluster do not receive for a long period of time any update from a channel, this event will be reported and 

the individual connections will be monitored and analyzed in order to find where the transactions are 

dropped and which actions (malicious or not) caused this event. For example, in the ordering phase, some 

transactions might be dropped. For such an action, only the OS can be held accountable, because either the 

cluster is corrupted and willingly dropped these transactions or the OSNs are corrupted and they did not 

forward the transactions to the cluster. Since, the all the OSNs are known, such an action can be investigated 

and identified. 

In Fabric, the atomic broadcast [21], i.e., (the total order of transactions) can only support the deliver and the 

broadcast events. These two events can be applied in the Fabric’s case [1] and they can also be supported by 

the interface of the OS: 

▪ 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑡𝑥): This operation is invoked by a client in order to disseminate a transaction (𝑡𝑥) to 

the OSNs. 

▪ 𝐵 ← 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑘): This operation can also be invoked (multiple times) by a client, where with input 

a positive increasing number 𝑘, it retrieves the block 𝐵 by a peer. This block will contain a list of 

transactions and a hash, which corresponds to the previous block (𝑘 − 1). 

The OS of Fabric ensures that the following properties, (as defined in [1], [15]) hold: 
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▪ Agreement: This property derives from the common-prefix property and states that for any pair of 

blocks (𝐵, 𝐵’), which are delivered from honest peers by the numbers 𝑘 and 𝑘’, (respectively), if 𝑘 =𝑘’ then 𝐵 = 𝐵’. 
▪ Hash chain integrity: This property also derives from the common-prefix property [19] and states 

that for any set of correct peers in a channel (𝑃, 𝑃’), if 𝑃 delivers the block 𝐵 with 𝐼𝐷 = 𝑘 and 𝑃’ 
delivers the block 𝐵’ with 𝐼𝐷 = 𝑘 + 1, then the hash of the previous block that is included in block 𝐵’ is the hash of the block 𝐵. Respectively, it is said that the peer 𝑃’ violates this property if the 

delivered block 𝐵’ does not contain the hash of the block 𝐵. Thus, any violation of the hash chain 

integrity by any peer can be detected and this property can be enforced to all the peers, even to the 

malicious, by means of the individual accountability. 

▪ No skipping: When a block 𝐵𝑘 is delivered by a correct peer 𝑃, then the peer 𝑃 has previously 

delivered all the blocks 𝐵𝑖, where 𝑖 = 0, … , 𝑘 − 1. 

▪ No creation: This property defines that if any correct peer 𝑃 delivers any block 𝐵, then ∀ 𝑡𝑥 ∈ 𝐵, 

each 𝑡𝑥 was previously broadcast by a client. 

In Deliverable 7.1, it was also mentioned the importance of the CAP theorem [17] to the BT. Thus, it is shown 

here how Hyperledger Fabric achieves all the required properties to satisfy the theorem [17], [18]: 

▪ Consistency: i.e. common-prefix property; which generally means agreement i.e. that there are no 

forks on the ledgers. It is mentioned above how Hyperledger Fabric satisfies this property. 

▪ Availability: i.e. liveness; which means that the transactions created by correct clients will be included 

to the ledger and will be available to the peers. 

▪ Partition Tolerance: i.e. fault-tolerance; this property ensures the continuous operation of the 

protocol, even if some of the participants fail (crash, misbehave, etc.). This property is satisfied 

according to the adopted consensus methods. (Further details will be provided in Section 3). 

2.3 Classification of security vulnerabilities 

Despite the fact that the technology behind blockchains inherits most of its security properties from 

cryptographic primitives (i.e. hash-functions); several threats, security vulnerabilities and limitations have 

been detected, identified and reported in blockchain deployments [22]. Given the potentials that this 

technology offers, there are multiple concerns regarding the blockchains’ robustness [23] and multiple 

reports have been conducted regarding the cyber-security of blockchains. Thus, in this Section, it is provided 

a taxonomy about the identified threats and security risks in blockchains. This taxonomy is based on findings 

from different events and produces a classification structure, see Figure 2-3, about most of the risks, the 

threats and the limitations of blockchains: 
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Figure 2-3: A taxonomy of blockchain attacks and risks [22] 

1. Consensus protocols’ risks: These risks concern the implemented consensus method on the blockchain 

mechanism and the protocol’s tolerance against malicious actions. Such risks are: 

▪ 51% Attack: If the adversary has more than 50% of the “total power” in the network (computational, 
stake, etc.), then it can alter the protocol and execute other attacks such double spending, DdoS, etc. 

▪ Double-spending: This attack is the most common attack in blockchains, where the adversary 

attempts to double-spend (coins, ether, etc). In this attack are included the alternative history attack, 

the Race attack, the Finney attack [25] and the Vector76 Attack, which arise from the BitcoinTalk 

forum3 and it is a combination of Finney and Race attacks4. 

▪ Game theoretic risks: This category is part of the consensus protocols’ risks and consists of the risks 

and strategies that malicious consensus nodes exploit and perform in order to maximize their 

revenue. Game theory can be also used to create incentives for the consensus nodes and avert them 

from misbehaving and executing attacks. The attacks that belong to this category are game 

theoretical and are: 

o BWH attack: In this attack, the attacker leaves the pool in which he is loyal and maliciously joins 

the targeted pool to mine blocks that he does not publish [26]. By withholding blocks the attacker 

does not gain any reward from the mined blocks but from the shared revenue of both pools. The 

unfortunate event is that if both pools attack each other, then the revenues are less if none of 

them had attacked. 

 
3 https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391 
4 https://www.reddit.com/r/Bitcoin/comments/2e7bfa/vector76_double_spend_attack/ 

https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
https://www.reddit.com/r/Bitcoin/comments/2e7bfa/vector76_double_spend_attack/
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o Bribery attack: In several consensus mechanisms bribing other nodes in order to gain profit is 

permittable. Thus, the attacker can validate malicious transactions, since a part of the consensus 

nodes have been bribed to accept them [27]. 

o Pool hopping attack: By monitoring the shares and the block creation rate, the attacker decides 

if it is best for him to leave the pool [28]. If the attacker assumes that its earnings are not enough, 

leaves the current pool and joins another. 

o Block discarding attack: By creating slave nodes, the attacker attempts to increase its superiority 

in the network. When new blocks are created by correct nodes, the attacker discards the correct 

blocks by disseminating its hidden and private chain [28]. 

o Selfish strategy: When the attacker acquires 25% of the “total power” in the network, executes 
this strategy [29] to take more nodes on its side and run other attacks such as DdoS and double-

spending. By performing a block discarding attack and taking into account the pool hopping 

attack, the attacker disseminates malicious blocks and lures other nodes to hop into its pool. 

o FAW attack: This attack is a combination of the selfish strategy [29] and the BWH attack [26]. 

This attack can be conducted by performing BWH attack on either a single pool or multiple. If the 

attacker solves a FpoW, the block is kept hidden. Depended on the chain’s outcome the attacker 
either discharges the hidden block or publishes it and creates a situation similar to the selfish 

mining strategy. 

2. Smart contract risks: The adoption of smart contracts in blockchains has led to several exploits and bugs 

(such as the DAO exploit and the Parity bug). In this category belong the Solidity and the EVM Bytecode 

risks. 

3. Client’s software risks: This category consists of the risks that can be exploited by an adversary at the 

user’s software or hardware. Such risks are: 

▪ Digital signature risks: The validity of the transactions and the authentication of each user are based 

on the ECC, (such as the ECDSA), where the digital signature is created with the user’s private key. 

Using the ECC is not adequate due to the fact that it does not provide the necessary randomness and 

the user’s private key might be compromised. 

▪ Hash function risks: To ensure the correctness of transactions and the immutability of blocks, the BT 

is based on SHA-256 (Bitcoin), which is vulnerable to multiple threats, such as collision and preimage 

risks [22]. 

▪ Mining malware: The attackers install malware on victim’s machines and force the targeted CPUs to 

spend their computational power in mining cryptocurrency for the attacker5. 

▪ Software’s risks: There are risks regarding the exposure of the user’s private keys, (such as runtime 

and concurrency). An example is the software update of Blockchain.info in 2014, where the private 

keys were compromised only by viewing the public addresses [24]. 

4. Network’s Risks: This category consists of risks in blockchains that occur in the peer-to-peer network 

layer, such risks are: 

▪ Partitioning attack: If the attacker isolates a set of nodes from the rest, the network can be 

partitioned via BGP hijacking and thus, hard forks may occur [30], [31]. This attack was demonstrated 

in the bitcoin network and showed that if one path attackers interfere with a minor number of 

messages, then the block propagation time can be significantly delayed. This action results to enforce 

the correct nodes to waste their mining power. 

 
5 https://www8.hp.com/h20195/V2/getpdf.aspx/4AA7-3873ENW.pdf 

https://www8.hp.com/h20195/V2/getpdf.aspx/4AA7-3873ENW.pdf
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▪ Delay attack: In contrast to the partitioning attack the attacker does not have to gain full access to 

the target’s traffic, but intercepting only one connection, he can introduce significant delays to the 

BTC. 

▪ DdoS attack: This attack is one of the most common attacks not only on the internet but also on the 

BT. An example of a DdoS attack is the Mirai botnet in 2016 [32]. 

▪ Sybil attack: This attack is mostly executed in trust/vote-based consensus methods, in which the 

multiple fake identities that the attacker is able to creates can alter the protocol [33]. A sybil attack 

[34] on PoW-based protocols has no effect because the attacker will have to divide its computational 

power. In the context of Hyperledger Fabric, this is assumed to be an example of the more generic 

type of insider attacks. 

▪ Transaction malleability attack: In the cryptocurrency-based networks, the attacker exploits this 

vulnerability to modify the identifier of a transaction (𝑇𝑋𝑖𝑑) in order to deceive the victim. An 

example of this attack is the Mt. Gox hack where coins were stolen from the exchange [35]. 

▪ Users’ addresses risks: Such as identity theft and MitM can be executed by an attacker to obtain 

rewards that were intended for the supposed target. Such attacks are disastrous in cryptocurrency-

based systems for the apparent reasons. 

There are also other types of more typical network-oriented attacks, like wormhole, man-in-the-middle and 

SSL stripping attacks, which can be applied to Hyperledger Fabric. These are all analyzed in Section 5. 

5. Privacy risks: Data privacy risks concern the data leakage by attackers via analysis. This analysis could 

expose valuable data regarding the data that have been stored on the DLT. This Such risks are:  

▪ Loss of confidentiality of personal data: An attacker manages to get access to personal data, without 

being authorized for such an access. 

▪ Transaction linkability: An entity that has access to the DLT manages to combine information 

concerning individuals so as to derive some conclusions (e.g. profiling of the users) for non-legitimate 

purposes and/or without informing users for this process 

▪ Private keys management. Compromisation of private keys results in identity thefts, as well as in 

privacy issues. 

▪ Malicious smart contracts: There is possibility that a smart contract might be able, either deliberately 

(due to a malicious programmer) or not, to leak personal information. 

▪ Non-erasable data: Due to the inherent immutability property of blockchains, data that have been 

put into a blockchain cannot be deleted. This gives rise to privacy issues, which are strongly related 

to the so-called right to erasure (or right to be forgotten). 

▪ Privacy interoperability across different blockchain-enabled scenarios. A blockchain can be applied 

in different kind of scenarios, which may demand diverse privacy requirements. 

2.4 Cyber-Trust’s implementation decisions 

In order to fulfill the technical or legal requirement imposed by the ecosystem of Cyber-Trust. Most of the 

implementation were about data retention and data privacy. 

Regarding data privacy, only the metadata of the actors are stored. This metadata consists of non-sensitive 

information such as name of organizations and members of the Cyber Trust platform. The nature of these 

data enables the sharing through all the peers of the network. To match the end user requirements of Cyber 

Trust, we also need to store the sensitive data, which is our case for the forensic evidence preservation. In 

this case, we use the private feature of Fabric. This feature allows us to partition the network into sub-

networks. This means that the only participants of a sub-network can have access to the data that is published 
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in this particular sub-network. So, once an ISP publishes private data to its private network, he is the only 

one who can see data’s content. A LEA can gain access to the forensic evidences by simply issuing a 

transaction. Once its demand is accepted, the LEA is added to the subnetwork. As a direct consequence of 

this addition, the content of the subnetwork is copied to the peer of the LEA. Only then he has access to the 

private data of the forensic evidences. 

Regarding to the data retention, the private data have a TTL, which is given to the DLT at the creation time, 

since each jurisdiction has potentially a different length for the data detention. This TTL corresponds to the 

time that the data will exist inside the sub-network before being deleted. 

During the development of Cyber Trust’s DLT we also took the decision to use as consensus the default 

method, which is Solo. Afterwards, while examining the security analysis of Solo, we figured out that the Solo 

consensus method is not the best option for our DLT, despite the fact that Hyperledger Fabric is the best 

option for our case. Indeed, Solo is very suitable during the development phase as it necessitates no 

configuration but it has several drawbacks. In the latest version of Fabric, the consensus has even been 

deprecated by the developers as according to them too many projects used Solo despite its weaknesses. 

One consequence of storing only metadata is the size of the transaction generated by inserting data to the 

DLT. Indeed, the size of the transaction has a direct impact on the throughput. As we are in the IoT ecosystem, 

we needed to design the DLT in order to achieve a high throughput of transactions. 
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3. Consensus security 

The consensus in distributed ledgers is a state where all the participating nodes agree upon the same 

messages in a specific order [1], i.e. atomic broadcast [21]. In Hyperledger Fabric the OSNs atomically 

broadcast endorsements and achieve agreement on the total order of transactions. Once the agreement is 

achieved, even in the presence of failing nodes, it can be certified the consistency (i.e. the common-prefix 

property, see Section 2.2) and the availability of the distributed ledger. 

3.1 Consensus methods in Hyperledger Fabric 

An important differentiation in each blockchain platform is the support of pluggable consensus methods to 

enable customization in order to achieve trust models or other use cases [1]. If a consensus mechanism is 

operated by a small enterprise, it is deployed in a small network or it is managed by a single trusted authority, 

complicated protocols might be considered as an exaggerated drag on energy consumption or the protocol’s 
performance. Thus, adopting a single node to order the clients’ request and provide substantial consensus, 

such as the centralized protocols do, the overall system might work quite as well as other complicated 

consensus mechanisms. 

3.1.1 Solo 

Solo is a centralized protocol that is being used for testing purposes. This consensus approach necessitates 

only one node in the network in order to acquire the incoming messages and it provides a substantial 

consensus, allowing developers to concentrate on other matters, such as the development of the smart 

contracts. However, the drawback of the Solo protocol is that it becomes a SPoF and endangers the security 

of the network. 

3.1.2 Kafka 

Apache Kafka [5] is a distributed pub/sub system for log processing, written in SCALA and JAVA. The 

distributed message system of Kafka is developed for transferring high volumes of information with very low 

latency. The key concepts of Kafka, as defined in [5] are the topics, the producers, the brokers and the 

consumers. The records are published by the producers to a topic, which is in a form of stream of messages 

[5]. A topic, in which none or more consumers subscribe to consume information, is partitioned into different 

segment files, as shown in Figure 3-1. 

 

Figure 3-1: A screenshot of a topic6 

 
6 https://sookocheff.com/post/kafka/kafka-in-a-nutshell/ 

https://www.thesaurus.com/browse/exaggerated
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
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In Kafka, the messages are stored in an ordered partition with a unique identifier and when a producer 

publishes a message to a partitioned log, the brokers – which are a set of servers – store the message to the 

latest segment file. Then, only the consumers, who are subscribed to this topic can only consume the 

messages in sequence from the partition by issuing pull requests to the brokers. 

The FT properties of Kafka are provided from the ZooKeeper. These properties can be achieved by replicating 

the partitions among the brokers. In simple words, Kafka follows the leader-follower model, where in each 

partition there is a leader and the rest of the brokers act as followers by passively replicating its actions. Thus, 

if the ongoing leader crashes or fails to submit a request, then one of the followers takes its place. 

Hyperledger Fabric [1] deploys Kafka and its ZooKeeper as an ordering service to provide consensus about 

transactions’ ordering. Since, the OSNs can operate as proxies among the network’s peers and Kafka; the 

cluster itself can be executed on physical nodes independent from the OSNs. If an OSN receives a new 

transaction from a client, then this transaction is injected to the Kafka broker. When the maximum size of 

bytes is attained or a specific amount of time is elapsed or when the maximum amount of transactions is 

received, then a block is cut [1]. 

 

3.1.2.1 Kafka’s Performance: 

The performance metrics of Fabric is measured in [1]. Kafka showed significant results. In their experiment 

the authors used a) 5 peers as endorsers with each peer to belong to a different organization, b) a typical OS 

with one Kafka OSN and c) the default 256-bit ECDSA signing scheme. The evaluation showed that 

Hyperledger Fabric can achieve the magnificent transactions’ throughput of 3500 TPS with latency less than 

a second, as shown in Figure 3-2. This result brought a significant revolution in the area of blockchains and 

particularly in the area of permissioned and business oriented blockchains. For this reason, Kafka, 

outperforming Solo, is the recommended protocol in version 1.0 of Hyperledger Fabric. 

 

Figure 3-2: Kafka performance [1] 

3.1.3 Raft 

Raft [6], [7] is a consensus method equivalent to (multi-)Paxos, similar to Oki and Liskov’s VSR protocol [8]; 

that follows the “leader-election” algorithm. The protocol achieves consensus by electing a leading node, 

which has the responsibility to accept and replicate the new entries from the clients without consulting other 

peers. The consensus algorithm is split into the following subroutines. Namely “leader election, log 

https://www.thesaurus.com/browse/independent
https://www.thesaurus.com/browse/attain
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replication and safety” to provide a strong leader and coherency. Raft is a consensus method that can endure 

crash failures. For example, if there are five nodes in a channel, which is the typical number in a Raft cluster, 

the protocol can tolerate the failure of two. While the protocol proceeds in terms, a node can be in one of 

the following three conditions “leader, candidate or follower”. A term is an arbitrary time period and each 

term is characterized by a monotonically increasing integer. 

 

Figure 3-3: States in Raft consensus7 

The leader is the principal entity capable to interact with the clients and replicates log entries to its followers. 

Each follower synchronizes with the leader. If the leader fails, the follower that has detected this divergence, 

casts a vote to the network and contests a new leader-election process in order to take its place. With the 

initiation of a new election process in each term, the contesting nodes may ask for support. Thus, nodes that 

request votes from others are considered candidates. Then, winner becomes a leader for this term. The 

above-mentioned states in the Raft are shown in Figure 3-3. 

The protocol has to make sure that only a single node can act as a leader. If there is a split up, the ongoing 

term will finish with no leader and a new term will begin with a new election [7]. When the nodes 

communicate with each other, the ongoing term number is exchanged and a node may not realize when the 

term is altered. In this case, the node revises its outdated number and if it is a leader or a candidate then it 

falls into the follower state. The leader also broadcasts arranged heartbeats to its followers. If a follower does 

not receive any for a particular time-period then it presumes that the leader has crashed and casts a vote for 

a new election. Figure 3-4 shows in a simple manner all the transitions, in which an OSN might be. The basic 

communication between the nodes is happening with RPC calls and concerns the initiation of a new election 

process, in which the candidates request for votes; and the replication of log entries, in which the leader 

broadcasts a heartbeat and compels the followers to append new log entries. 

 
7 https://www.geeksforgeeks.org/raft-consensus-algorithm/ 

https://www.thesaurus.com/browse/revise
https://www.thesaurus.com/browse/arranged
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Figure 3-4: OSN status transitions7 

3.1.3.1 Raft’s performance: 

The performance of the Raft consensus is measured in [9] prior to the adoption of Raft in Hyperledger Fabric, 

by an IBM distinguished engineer. In the experiment, it was used the same topology of Hyperledger Fabric 

v1.4.1 to compare the two protocols. The results, which are illustrated in Figure 3-5, showed that Raft 

outperforms Kafka with almost twice the transaction throughput and even less latency. Thus, Raft 

outperforming Kafka becomes the recommended protocol in the latest version of Hyperledger Fabric. 

 

Figure 3-5: The throughput of Kafka (in the left) and Raft (in the right) [9] 

3.1.4 BFT-SmaRt 

BFT-SmaRt [10] is a modular SMR that can be used to provide an OS for Hyperledger Fabric [1]. In the absence 

of malicious validation replicas (VRs), the BFT-SmaRt’s message pattern is similar to PBFT’s and it is illustrated 

in Figure 3-6. The time in BFT-SmaRt is separated into instances, where in each instance, a leader validation 

replica (LVR) proposes a sequence of requests to be categorized and ordered. This is happening by 

disseminating a propose message to all the other VRs. When the propose message is received by a VR a 

security check occurs in order to be verified that the sender is indeed the leader and that all the transactions 

included in it are valid. Then the VRs store the proposed batch and disseminate a write message to all the 

other VRs. If a VR collects ⌈(𝑛 + 𝑓 + 1)/2⌉ write messages for a batch, makes it public by disseminating an 

accept message. Then, if a VR collects ⌈(𝑛 + 𝑓 + 1)/2⌉ accept messages it delivers the batch by denoting its 

decision for the ongoing instance. In case where the network does not achieve consensus, then a new leader 

is elected and a new instance begins [10]. 
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Figure 3-6: The message pattern of BFT-SmaRt [11] 

BFT-SmaRt also implements WHEAT to provide faster replication, reduced latency and an efficient vote 

assignment scheme for the OS, without imperiling the security properties of the consensus method (i.e. the 

agreement and the liveness, see Section 2.2). The OS is comprised by the frontends and the cluster. In the 

cluster, in which malicious nodes may exist, the OSNs execute the protocol and order the transactions, which 

are received from the frontends. The transactions are in a form of envelopes and when a predetermined 

number of envelopes is collected a new block is created. The envelopes are transferred from the clients to 

the frontends, which in their turn relay them to the OSNs. When a new block is created, it contains except 

from the envelops, the digital signature of the block and the hash of the previous block. After its creation, 

the new block is disseminated from the OSNs to the frontends, which in the worst-case scenario can assemble 

2f +1 matching blocks. After receiving the generated blocks from the OSNs, the frontends send the generated 

blocks only to the peers in charge to manage the DLT. The design of the OS in BFT-SmaRt is shown in Figure 

3-7 and demonstrates how the frontends communicate with the OSNs and the clients. 

Each frontend is comprised by two major components; namely “the Fabric codebase” and the “BFT-shim”. 
The former acts as an interface for the clients to submit requests in a form of envelops and the later possesses 

the components to interact with the clients and the OSNs. These components are illustrated in the left part 

of Figure 3-7 and they mentioned below: 

1. The client thread pool (Client Threads), which collects the envelops and sends them to the OSNs. 

2. The receiver thread (Recv Thread), which receives the new created blocks from the OSNs. 

3. The BFT-SmaRt proxy through which the envelops are sent to the OSNs and the blocks are received 

from them, and 

4. The Fabric’s SDK, which confirms that the appropriate computations are executed regarding the 

invocation of transactions, the queries of blocks and the monitoring of events on a channel. 

On the right part of Figure 3-7 are illustrated the OSNs. The OSNs are part of the cluster and each one 

manages a block-cutter, in which the envelopes are placed before the creation of a block. This component 

handles all the envelopes correlated with each channel in the DLT and creates batches of envelopes in order 

to be added in a block for a ledger correlated with a specific channel. When a pre-arranged number of 

envelops is collected for a channel, then the block-cutter alerts the node thread to create a new block. 

https://www.thesaurus.com/browse/prearranged
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Figure 3-7: The OS architecture [11] 

When a new block is created the block-cutter drains itself and a new integer is appointed for the next block. 

This increasing number is given to the signing and sending thread component accompanied by the specific 

header. The block-header consists of the foregoing increasing integer, the hash of the envelops and the hash 

of the previous header [11]. Commonly to the frontends, the Fabric’s SDK is utilized to create and manage 

the data structures of the network. Furthermore, the ordering nodes also use the SDK to create all the 

cryptographic hashes of the blocks and their digital signatures via the ECDSA. When a new block is created, 

it is signed and delivered to all the operating frontends by BFT-SmaRt’s API. The BFT-SmaRt replica apart from 

receiving, ordering and executing the disseminated transactions from the frontends, also provides 

supplementary capabilities. In short, these capabilities concern the state machine replication, and the 

configuration of the ordering nodes and the durability of a state in the extreme case of all the ordering nodes 

collapse. 

BFT-SmaRt’s validation process differs from the original that is presented in [1]. Hyperledger Fabric is flexible 

to blocks that include invalid transactions and for this reason the OSNs in Kafka can order the transactions 

without any validation checks. The validation process in Kafka, is taking place in the validation phase where 

the peers mark each transaction as valid or invalid. In BFT-SmaRt’s case, the transactions can be checked for 

double spending by the signing and sending threads component prior to their dissemination to the peers. 

Thus, invalid transactions can be removed from the blocks before creating the blocks’ signatures. 

 

3.1.4.1 BFT-SMaRt’s Performance: 

The performance of BFT-SMaRt is measured in [11] and showed that the protocol can provide transaction 

throughput more than 10 thousand TPS and BCT less than 1sec. In their experiments, they used different sets 

of ordering nodes capable to withstand misbehavior. In each block are included 10 or 100 envelops, where 

each envelop is either 40 bytes, 200 bytes, 1 kbytes or 4 kbytes. The results are illustrated in Figure 3-8. In 

this experiment the authors used 4 orderers and they also stored 10 envelops per block. It can be observed 

that when one or two receivers (frontends) exist in the system, the maximum throughput is more than 50 

thousand TPS for small envelop sizes. 

https://www.thesaurus.com/browse/foregoing
https://www.thesaurus.com/browse/operating
https://www.thesaurus.com/browse/supplementary
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Figure 3-8: The performance of BFT-SMaRt 

3.1.5 Comparison 

Solo is not tolerant against faults and therefore it does not satisfy the CAP theorem. Furthermore, it can 

become a SpoF and for this reason it should not be deployed. Both Kafka and Raft use the “leader and 
follower” design to withstand failures and provide significant throughput. Although Kafka is very popular, 
various tricky components have to be managed in order to be implemented. In Raft, all these components 

are embedded into the OSNs, which means that there are less components that might fail. Kafka and 

ZooKeeper are designed to be implemented in a small network comprised by a few OSNs and the Kafka 

cluster has to be run by single entity. This makes all the nodes to attract this entity and does not provide 

much to escalate the decentralization of the system. On the other hand, Raft is more decentralized and 

provides much more throughput than Kafka does [12]. In addition, Solo and Kafka are deprecated in v2.0 of 

Hyperledger Fabric. BFT-Smart is also a protocol that provides significant transactions throughput, and it can 

also withstand malicious actions outperforming all the previous protocols. Unfortunately, BFT-SMaRt is a 

Java-based library and it is not yet adopted by the Hyperledger Project8. In addition, the protocol does not 

provide a very stable OS. In particular, it requires to operate two processes; the first build in Java and the 

second in GO; with a network socket bound among them, which might act as bottleneck in the system. 

3.2 Threat’s overview 

The consensus protocol that is going to be implemented is one of most fundamental part to consider during 

the development of a blockchain system. The consensus method is the assurance for the reliable operation 

of the system, due to the fact that the nodes agree upon the validity of a transaction via this protocol.  The 

51% and the double spending attacks differ according to consensus protocol that is being used but they can 

cause huge irreparable damages in any case. The 51% attack intends to create an alternative chain in order 

to perform double-spending. Similarly, the BWH attack, the Selfish strategy and the other game theoretic 

risks derive from the consensus protocol that is being used and the incentives that it provides.  

In Fabric, the transaction flow is different than the other blockchain mechanisms. The 51% attack and the 

aforementioned game theoretic attacks (see Section 2.3) are not even applicable to Fabric. The only attack 

that is applicable in our case is the double spending attack which is addressed by Fabric with a special way.  

Fabric follows the execute-order-validate model (see Section 2), in which one or more malicious transactions 

can be sent from a client to the OS for ordering and hence these transactions can be included in a block. The 

 
8 https://www.hyperledger.org/ 

https://www.thesaurus.com/browse/escalate
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detection of double spending occurs, not only in the execution phase, but also when the transactions and 

the blocks have been ordered in the validation phase, where the peers check and update the read-write sets 

of the world state. All the transactions that are included in a block are marked as valid or invalid [1]. To 

perform that action, the peers check if the current version number that there is on the ledger is the same 

with that on the read-set. Then, in the validation phase, marks as valid only the first transaction that changes 

the version of the state, all the others are marked as invalid [1]. Thus, double spending and similar attacks 

cannot be executed in Fabric, regardless of the consensus protocol that is being used. 

3.3 Threat’s mitigation 

Generally, in blockchains the most important threats can be dealt with the implementation of the 

appropriate consensus method. The consensus methods are characterized by their resilience against faults 

and these are relied on CFT and BFT design principles are capable of thwarting the most prominent threats.  

3.3.1 Crash fault tolerant protocols 

An atomic broadcast [21] is indicated by the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 and the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 events, which may occur in the 

protocol multiple times. The broadcast event means that each node can disseminate a message with the 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑚) event and the protocol via the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝑚) event outputs the message 𝑚. More precisely, 

considering a set of 𝑛 nodes in a network, the following properties should be fulfilled [4]: 

Validity: If any legitimate node 𝑛𝑖  disseminates a message 𝑚𝑗, then ultimately 𝑛𝑖  delivers 𝑚𝑗. 

Agreement: If any message 𝑚𝑗 is delivered by any legitimate node, then 𝑚𝑗 is ultimately delivered by all the 

legitimate nodes. 

Integrity: Any message 𝑚𝑗 is not delivered more than once by any legitimate node. Furthermore, if any 

legitimate node delivers the message 𝑚𝑗 and the sender 𝑛𝑖  of the message is also legitimate, then 𝑚𝑗 was 

formerly broadcast by 𝑛𝑖. 

Total order: For any pair of messages (𝑚1, 𝑚2) are delivered by a pair of legitimate nodes (𝑛1, 𝑛2), it is said 

that 𝑛1 delivers 𝑚1 before 𝑚2, if and only if,  𝑛2 delivers 𝑚1 before 𝑚2. 

The most prominent and successful way to reach consensus (i.e. implement atomic broadcast [21]) in DLTs 

which are vulnerable to 𝑡 < 𝑛/2 node crashes, (where 𝑡 denotes the number of the crashed nodes), is to 

implement a family of protocols which are known today as crash-fault-tolerant (CFT). The security against 

crashes that these protocols provide, has led to their adoption in several critical environments and it is model 

by identical rules for different implementations. In the CFT family of protocols, the time is parted into a 

sequence of views – such as in Snow White [3] – or epochs – such as in Ouroboros [2] – where in each time 

interval, a leader is voted, elected, or randomly selected to create, disseminate and propose a block. The 

security of the system is based on the most important property that CFT protocols possess: “If the leader 

collapses, or even if a set of nodes in the network speculate that the leader has collapsed, then a new epoch 

or view begins with a new leader”. 

3.3.2 Byzantine fault tolerant protocols 

Recently, several consensus methods have been emerged to counter the capability of Byzantine nodes, often 

called adversaries, whose goal is to manipulate the network. The family of Byzantine-Fault-Tolerant (BFT) 

consensus methods aims to reach consensus knowing that a set of participating nodes expresses 

malicious/byzantine behavior. Similar to the CFT protocols, these protocols utilize a leader-election algorithm 

to elect a node, which will order the incoming messages in each epoch, view or round. Moreover, BFT 

protocols by their nature are CTF, which means that they can tolerate not only a set of byzantine failures but 

also the same number of crashes. Generally, a consensus method attains the BFT requirements if the 

malicious nodes, here denoted with 𝑓, do not exceed a percentage of 33% of the network, meaning that the 

following condition holds: 𝑛 ≥ 3𝑓 + 1. 

https://www.thesaurus.com/browse/speculate
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3.3.3 Adoption of incentives 

A blockchain mechanism requires a set of nodes to participate in the consensus process. Several rational 

nodes by working individually may perform actions to maximize their benefit against the common goal of the 

network. Other malicious nodes by working collectively may launch attacks or perform strategies to take 

advantage of the consensus process. However, different approaches have been used to optimize and 

examine the strategies and the actions that are being performed by blockchain nodes in order to identify and 

thwart their malicious behaviors, such as the Markov Decision Process (MDP) [13]. Recently, the 

mathematical tools of game theory have been utilized as a different solution in blockchains to analyze the 

interactions and misbehaviors between rational nodes. By utilizing the game theoretical analysis in a 

blockchain mechanism, it is possible to develop incentive mechanisms that prevent malicious acts and 

analyze the actions of rational players that mishandle the network.  

Current state in Fabric: The Fabric can facilitate malleable trust assumptions. In particular any client might fail or 

presumed conceivably malicious. The peers are gathered into organizations and each organization creates a trust 

domain, in which each peer trust only the other peers of the same organization. The integrity of the network relies in 

the OSN, which consider the clients and the peers as potentially malicious. In Fabric, the trust assumptions for 

distributed applications are detached from the trust design of the consensus method. In simple words, a distributed 

application can settle its own trust model, which is transferred via the endorsement policy, and it is separated from the 

trust model that is implemented on the consensus method. Thus, attaching a reputation to the nodes’ identities, 
incentivizes the clients, the peers and the OSNs to adhere to the protocol and not deviate.  

3.4 Comparative evaluation of (semi-)permissioned blockchain solutions 

Apart from Fabric, several other blockchain solutions have been proposed to secure IoT networks. 

Permissionless blockchains, by their nature, cannot be used in an environment where the IoT devices share 

critical information. The computational power that the PoW-based implementations need, can be considered 

as a bad choice in an IoT ecosystem where IoT devices must execute computations. 

In contrast to permissionless, other blockchain solutions are marked by the fact that the participating entities 

that regulate the critical information are identified and can be considered accountable for misbehaving. 

Permissioned blockchains can provide the necessary transaction throughput and latency, without adopting 

the security and the design thinking of permissionless [16]. The design of public and cryptocurrency based 

DLTs (such as Bitcoin’s) can act as bottleneck in a network where the performance of the ledger is the most 

important aspect. 

https://www.thesaurus.com/browse/adjusted
https://www.thesaurus.com/browse/malleable
https://www.thesaurus.com/browse/separate
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Figure 3-9: The transaction’s throughput of each (semi-)permissioned blockchain platform 

The transaction’s throughput of the most prominent (semi-)permissioned blockchains according to the 

adopted consensus method is illustrated in Figure 3-9. It can be observed that the throughput of the most of 

them is high and some platforms outperform Hyperledger Fabric. The corresponding latency of each one of 

these DLTs and their implemented consensus methods are illustrated Figure 3-10, where only the transaction 

latency less or equal to 1sec can be considered acceptable to the IoT ecosystem. 

 

Figure 3-10: The BTC of each (semi-)permissioned blockchain platform 

The transactions’ fees, the low network’s throughput and the high BCT are not the only options that we had 

to take into account in order to choose which DLT and which consensus method we are going to implement. 

The idea of misbehaving without consequences is not a good option for Cyber-Trust’s case. Thus, in Error! 

Reference source not found.  it is illustrated the performance and the tolerance (CFT or BFT) of several 

permissioned and semi-permissioned blockchain solutions regarding their implemented consensus methods. 
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Tx-class and Lt-class denote the given characterization according to each platform’s transaction throughput 
and latency, (respectively). These two factors are the most crucial to be considered in an IoT ecosystem 

where a transaction should be disseminated and stored into a ledger in matter of seconds or even less. Thus, 

in Error! Reference source not found. it is mapped a three-valued scale (Low, Med and High) to denote the 

Tx-class and Lt-class, as well as the overall performance of various permissioned and semi-permissioned 

blockchains. The overall performance characterization is derived from the combined characterization of the 

Tx-class and the Lt-class. The transaction throughput (Tx-class) is defined to be: 

▪ Low: If the transaction throughput is less than 500 TPS, 

▪ Med: If the transaction throughput is between 500 and 1500 TPS, and 

▪ High: If the transaction throughput is more than 1500 TPS. 

Respectively, the Lt-class is defined to be: 

▪ High: If the transaction’s latency is less than 1sec, 

▪ Med: If the transaction’s latency is between 1 and 10sec, and 

▪ Low: If the transaction’s latency is more than 10sec. 

 

Table 3-1: Comparative evaluation of (semi-)permissioned blockchain solutions 

Consensus Fault Tolerance Platforms Throughput Tx – 

Class 

Latency 

(BCT) 

LT – 

Class 

Overall 

Performance 

Aura BFT: 2𝑓 + 1 Parity 35-45 Low 3-7sec Med Low 

BFT-SmaRT BFT: 3𝑓 + 1 Fabric > 10000 High 0.5sec High High 

Symbiont 80000 High <1sec High High 

DBFT BFT: 3𝑓 + 1 Neo < 1000 Med 15-20sec Low Low 

DpoS BFT: 3𝑓 + 1 EOSIO 1000 – 6000 High < 1sec High High 

Bitshares 100000 High 1sec High High 

Tron >2000 High 3sec Med Med 

Lisk 2.5 Low 6min Low Low 

Tezos 40 Low ≈30min Low Low 

IBFT BFT: 3𝑓 + 1 Quorum 400 – 700 Med 4.5sec Med Med 

Kafka CFT: 2𝑡 + 1 Fabric 3500 High <1sec High High 

Corda 3000 – 15000 High 1sec High High 

PoET BFT: 𝛩 (loglog𝑛log𝑛 ) Sawtooth 1000-2300 High <1sec High High 

Raft CFT: 2𝑡 + 1 Corda 100 – 200 Low 1 sec High Low 

Quorum ≈ 650 Med 4-4.5 sec Med Med 

Fabric ≈ 7000 High < 1 sec High High 

RPCA BFT: 4𝑓 + 1 Ripple 1500 High 4 sec Med Med 

Tendermint BFT: 3𝑓 + 1 Ethermint 200-800 Med 1 sec High Med 

VBFT BFT: 3𝑓 + 1 Ontology >3000 High 5-10 sec Med Med 

YAC BFT: 3𝑓 + 1 Iroha several 

thousands 

High < 5 sec Med Med 

An implementation of the same consensus method on different DLTs can provide different performance. For 

example, Kafka can provide 3500 TPS in Fabric [1] and 3 to 15 thousand TPS in Corda. It is obvious that in the 
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case of the Kafka, Corda outperforms Fabric. Unfortunately, the protocol is only experimentally implemented 

in Corda and it does not provide a stable notary service9. Bitshares, EOSIO and Symbiont can provide 100000, 

6000 and 80000 TSP respectively, with each transaction to be appended in a block in 1sec or even less. 

Bitshares and Symbiont have a tremendous throughput, but unfortunately, these consensus methods are not 

deigned to be deployed in an IoT ecosystem and the monetary concept that they possess cannot be easily 

substituted with IoT-based criteria. BFT-SMaRt seems to be a quite appealing protocol for our case, but there 

are several issues that might arise, (see Section 3.1.5). 

Fabric’s performance is not the only aspect that led us to our option. The aforementioned (semi-

)permissioned platforms follow the Order-execute model [1] and thus, suffer from various restraints that 

affect the security of the system [16]. When the smart contracts are executed, they are run consecutively 

and on each peer that participates in the consensus process, which in its turn is hard-coded within the system. 

Fabric follows the execute-order-validate model, addresses the above restraints [1], [16] and strengthens the 

necessary security properties that a secure blockchain mechanism should have. 

Taking into account the above research and the comparison in Section 3.1.5 it is clear that Cyber-Trust’s 
decision to use Hyperledger Fabric with the Raft consensus protocol is by far the best option. 

3.5 Conclusions and next research steps 

The consensus implementation can be considered as one of the most important components of a DLT. A CFT 

consensus method might initially seem to be at odds with a secure DLT, but this is rather not the case in 

Fabric. CFT protocols are amenable to permissioned networks for specific blockchain use cases in which 

the need for a secure distributed database is more visible. The permissioned networks consist of identified 

entities that collaborate to achieve consensus even in the presence of malicious peers. 

The fact that all the peers in Fabric can be held accountable for their actions provides them an incentive to 

follow the consensus method. Regardless of the implemented type of consensus (i.e. CFT or BFT), the 

Hyperledger Fabric can address not only the most common types of consensus-oriented attacks, i.e. the 

double-spending attacks, but also more sophisticated ones by its design. The combination of Fabric and a 

CFT consensus protocol is considered to be ideal in an enterprise environment [16]. 

BFT protocols, like BFT-SMaRt, are left for future research (as they are still being researched and they have 

not currently been tested in a production environment) and it remains to be seen if this protocol is indeed 

going to be adopted by the Hyperledger project. Another BFT protocol that has been implemented on Fabric 

is the HoneyBadgerBFT [36], [37]. This particular protocol experimentally achieves a tremendous throughput 

of 100 thousand TPS in Fabric; unfortunately, this throughput has not been validated in a real-world 

environment yet. Thus, it is left to see how such an idea can be implemented and if it is possible to add 

“internal” incentives and trust assumptions to all the peers, clients and OSNs in Fabric in order to make them 

follow the protocol. 

 
9 https://docs.corda.net/docs/corda-enterprise/3.3/design/kafka-notary/design.html 

https://docs.corda.net/docs/corda-enterprise/3.3/design/kafka-notary/design.html
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4. Smart contract’s security 

Smart contracts are executable programs, which implement operations that have been agreed among the 

entities on a DLT network (see Figure 4-1). Each entity executes the contract locally and submits the result to 

the system, while they all work together to select the result to put into the DLT’s ledger. 

 

Figure 4-1: Smart contract system based on blockchain technology [61] 

The persistence of smart contracts can induce various programming errors, which can eventually lead to 

malicious behavior and exploits. Therefore, the smart contracts can be considered as an easy target for 

malicious programmers who observe the program’s code in order to discover exploitable bugs. 

4.1 Potential risks 

Most of the smart contracts’ vulnerabilities are typically caused by programs’ defects (e.g. design flaws, 

coding errors, etc.), as indicated in Error! Reference source not found.; According to [63], a large number of 

smart contracts (nearly 50% from a sample of 19,366 available ones) have been found to be vulnerable. As 

we are interested in the permissioned setting and the details of smart contracts for Hyperledger Fabric 

(referred to as chaincode), our subsequent discussion focuses on them.  

Table 4-1: Taxonomy of vulnerabilities in smart contracts [62] 

Vulnerability Cause  Vulnerability Cause 

Call to the unknown The called function does not 

exist 

 Immutable bug Alter a contract after 

deployment 

Out-of-gas send Fallback of the callee is 

executed 

 Ether lost Send ether to an orphan 

address 

Exception disorder Irregularity in exception 

handling 

 Stack overflow The number of values in stack 

exceeds 1024 

Type casts Type-check error in contract 

execution 

 Unpredictable state State of the contract is 

changed before invoking 

Reentrancy vulnerability Function is re-entered before 

termination 

 Randomness bug Seed is biased by malicious 

miner 

Field disclosure Private value is published by 

the miner 

 Timestamp dependence Timestamp of block is 

changed by malicious miner 
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Legend    EVM bytecode 

 Source code   Blockchain mechanism 

Smart contracts that have been developed in Hyperledger Fabric [1] use general-purpose programming 

languages (i.e., Java, Node.js and Go). In general, smart contracts are programmed using DSLs, which have 

been defined by precise features and restrictions for blockchains. Hyperledger Fabric adopts the above 

programming languages, but in the absence of features and restrictions, the potential risks related with the 

platform might differ from the risks that other permissioned DLTs face. This occurs due to the fact that these 

platforms are related with smart contracts that are written by DSLs. In this section, a list of potential risks 

[14], [64] associated with the Hyperledger Fabric’s chaincode is provided. The indicative risks have been 

mentioned below according to their philosophy. 

4.1.1 Non-determinism ascending from programming languages 

The determination of the chaincode is a crucial concern, since it is conducted in identified and independent 

peers [1], [14]. If the chaincode is non-deterministic, the endorsing results from the peers to the clients in 

the execution phase might be inconsistent. Inconsistencies may arise from several reasons, such as the 

following: 

▪ Global Variables: Can change innately and cause non-determinism 

▪ Generating Random Number: Can be used in various cases and lead to dissimilar behaviours. 

 

Figure 4-2: An example of non-deterministic risk [14] 

In Figure 4-2, an example of non-determinism is represented, where the users guess a randomly 

generated number. If the number is true then the users gain their prize. The chaincode, during the 

endorsing phase is simulated in each endorsing peer. Thus, the generated numbers might be 

dissimilar in each peer. In Go, the seed is settled as 1 and it is easy to predict. Thus, in adversarial 

environments it should be set as: rand.Seed(time.Now().UnixNano()). 

▪ System Timestamp: It is difficult to confirm if the timestamps are executed concurrently in each peer. 

▪ Map Structure Iteration: Due to the hidden implementation details of the Go programming language, 

when an iteration with map structure is used, non-determinism may arise and the order of key values 

might differ. 

▪ Concurrency of the Program: In Go, concurrent programs are supported (by using goroutine). If a 

program is executed concurrently with another, non-determinism might occur and a double spending 

problem might arise. 

https://www.thesaurus.com/browse/settled
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4.1.2 Non-determinism ascending from accessing peripheral of the DLT 

Non-determinism might also arise from accessing information outside of the DLT, where such risks may arise 

from in the following cases: 

▪ Web Services: In several cases, the business logic that characterizes the smart contracts, can provide 

information peripheral of the blockchain. In such cases a trusted entity called “oracle” needs to be 

accessed. A common practice is to call APIs in order to implement functionalities by a Trusted Third 

Party (TTP). If a web service returns divergent results, then the ledgers might fork. 

▪ Calling External Libraries: In a similar way to web service, the external libraries should not be trusted. 

▪ External Command Execution: Useful external commands can be executed via the os/exec package, 

but sometimes the results are not the same between the endorsing peers. 

▪ Accessing External Files: In a similar way to the External Command Execution, if the chaincode 

accesses external files, the results on the endorsing peers might differ. 

4.1.3 Fabric specification 

The risks in this category are depended on Fabric’s implementation. 

▪ Chaincode Invocation Between Different Channels: If two or more chaincodes are executed on the 

same channel, then no risk will arise by invoking one chaincode [14] from another. On the other 

hand, if the InvokeChaincode() method is used and the invoked chaincode is on a separate 

channel, then all the calls from the PutState method will have no effect to the world state. 

▪ Range Query Risks: In order to access and obtain the results from the state database about the 

private data, the key’s history, etc., the peers execute queries with the GetHistoryForKey(), 

GetQueryResult(), and GetPrivateDataQueryResult() commands. These queries are not 

executed again in the validation phase, which means that phantom reads cannot be detected. 

▪ Chaincode sandboxing: The Hyperledger Fabric’s chaincode runs in a secured Docker container (as 

also presented in project’s deliverable D7.2 [68]) that is isolated from the endorsing peer process. 

The chaincode however has sufficient privileges that could be exploited in a malicious manner to e.g. 

install arbitrary software, perform port scanning, exploit vulnerable hosts, etc. Such aspects are 

treated in more detail in Section 5 that deals with software and network security). 

4.2 Threat’s mitigation 

Cyber-Trust is aware of aforementioned risks, since these risks are the only ones that have been reported on 

Fabric’s documentation10, discussions on GitHub11, research papers, as well as blogs12. As a general rule-of-

thumb, a number of possible proactive measures can be taken to increase CTB chaincode’s security [64]: 

▪ Execute chaincode with privileges other than root; 

▪ Define time limits while executing chaincode (to also deal with denial of service attacks); 

▪ Ensure that chaincode cannot achieve persistence by other; and 

▪ Check chaincode’s input arguments for escape characters. 

 
10 https://hyperledger-fabric.readthedocs.io/en/latest/index.html  
11 https://github.com/hyperledger-archives/fabric/issues/1273  
12 https://gist.github.com/arnabkaycee/d4c10a7f5c01f349632b42b67cee46db  

https://www.thesaurus.com/browse/divergent
https://hyperledger-fabric.readthedocs.io/en/latest/index.html
https://github.com/hyperledger-archives/fabric/issues/1273
https://gist.github.com/arnabkaycee/d4c10a7f5c01f349632b42b67cee46db
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These are typical counter-measures that have been considered during the CTB implementation. However, 

there are also a number of other approaches for mitigating threats in smart contracts that depend on some 

formalization technique [70].  

Symbolic execution techniques. Are being used by software testing tools that mostly perform static analysis 

of smart contracts’ security and privacy to identify weaknesses in their source code. Tools like Oyente13, 

Securify14, and GASPER [71] are among those providing this type of functionality15, but they are focusing on 

Ethereum smart contracts. Other more generic tools include SmartCheck16 that can check a smart contract 

for vulnerabilities and a multitude of bad practices, highlighting them in the source code and also giving a 

detailed explanation of the problem; this solution’s drawback is that it is provided as a service, requiring the 

source code to be uploaded in an online platform. 

Formal modelling techniques. The smart contract is modelled by using a precise set of statements defining 

the relationship between the smart contract’s internal components, and resulting into an unambiguous 

communication, and replicable/reproducible results [72]. As an example, the world state in Fabric, which is 

in the form of (key, value, version) [1] maintains a cache of the ledger’s latest states, which are in 
the form of (key, value) pairs17. An application could invoke a chaincode that can provide e.g. (get, put 

or delete) operations on the state via Fabric’s API methods. These methods can be specified as: 

▪ GetState(key): With a key string as input, it outputs the latest entry regarding this key. If such an 

entry does not exist, it outputs empty. 

▪ PutState(key, value): This method takes as input an entry (a key string and a value array) and 

puts it at the end of the world state’s sequence. 

▪ DeleteState(key): With input a key string, deletes the respective state. 

This type of modelling can be used to detect design flaws and deficiencies in the chaincode’s source. Formal 

modelling is also used to properly analyze other properties of a blockchain such as scalability, performance, 

and privacy. 

Model or property checking. This is related to the previous technique and models the smart contract as a 

finite-state system that behaves exactly according to its formal specification or correctness properties (and 

likewise, it has also been used to analyze other properties of a blockchain). In many cases, the process is 

assisted by model checker, i.e. an automated tool that verifies the correctness and important properties of 

smart contracts; SPIN18 and UP-PAAL19 are examples of such open-source tools. 

4.3 Conclusions and future research steps 

There is a recent growing need for provable security (and privacy) properties of blockchain solutions’ smart 
contracts which could be analyzed based on formalization techniques. This approach seems to be promising 

and could be examined as future research work. 

 
13 https://github.com/melonproject/oyente  
14 https://securify.chainsecurity.com  
15 https://consensys.github.io/smart-contract-best-practices/security_tools/  
16 https://tool.smartdec.net  
17 https://hyperledger-fabric.readthedocs.io/en/release-1.4/ledger/ledger.html 
18 http://spinroot.com/spin/   
19 http://www.uppaal.org/  

https://github.com/melonproject/oyente
https://securify.chainsecurity.com/
https://consensys.github.io/smart-contract-best-practices/security_tools/
https://tool.smartdec.net/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/ledger/ledger.html
http://spinroot.com/spin/
http://www.uppaal.org/
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5. Software and network security 

The rise of Hyperledger Fabric blockchain is accompanied by security risks and concerns (some of which might 

not have been explored yet) that can be detrimental to the DLT operation and performance if they are not 

accounted for [47]. This section presents a brief overview of such attacks along with possible 

countermeasures that could be adopted for their mitigation. 

5.1 Threat’s overview 

Most of the possible threats related to the software of Hyperledger Fabric along with any network-related 

attacks that might be exploited by intruders to break down the Hyperledger Fabric’s network are described 

below. 

Insider threats. Hyperledger Fabric relies on some trusted parties and centralized services (i.e. Membership 

Service Provider (MSP) admins and the OS) to provide a generalized platform for establishing a permissioned 

blockchain, which makes these services vulnerable to Insider threat [47, 49], when a peer become malicious 

and behave incorrectly, for instance, when it tries to maximize its own profit or becomes corrupted by an 

attacker. Insider threat could allow for further attacks such as DDoS attacks, Crash faults, 51% attack, Sybil 

attacks and Man in the Middle Attacks. 

▪ Compromised Membership Service Provider (MSP): MSP is one of the defining aspects of Hyperledger 

Fabric because it is responsible for managing identities of all participants in the network including 

clients, peers and ordering nodes (Figure 5-1). Therefore, in case that the MSP is compromised or 

becomes malicious because of a security breach, it can cause catastrophic damage to the network 

[49], by spreading false information to the network, adding (or blacklisting) identities and nodes to 

(from) the blockchain as desired, submitting new transactions that did not happen or should not be 

submitted, manipulating the amount and type of access a given identity has to the blockchain 

network [47], which open the possibility for further attacks such as 51 % attack, Sybil attack, Invalid 

ID Attack, Boycott Attacks, etc. 

 

Figure 5-1: Local MSP structure20 

▪ Compromised Ordering Service (OS): OS consists of ordering nodes (also called orderer nodes) that 

establish the total order of all transactions and broadcast them as blocks of transactions to all 

connected peers in the network, while peers which are not connected to the ordering nodes get 

 
20 https://hyperledger-fabric.readthedocs.io/en/v1.1.0-rc1/membership/membership.html  

https://hyperledger-fabric.readthedocs.io/en/v1.1.0-rc1/membership/membership.html
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blocks from other peers via gossip protocol [51]. Because Fabric’s design relies on deterministic 
consensus algorithms, the blocks generated by the OS are guaranteed to be final and correct [47]. 

Therefore, a compromised OS can cause significant damage to the Hyperledger Fabric members by 

blocking transactions from certain peers for updating into the ledger (i.e. Sabotage attacks), 

withholding certain blocks, or manipulating the release of certain blocks which would favour certain 

ordering nodes. Further, a malicious OS can corrupt the all network by sending different versions of 
the blocks in response to the broadcast and deliver requests [47]. The OS is also responsible for 

setting the channels configurations including the Batch Size (i.e. A set number of pending 
transactions before catting the block) and the Batch Timeout (i.e. the amount of time to wait after 

the first transaction arrives for additional transactions before cutting a block) [52]. Thus, a malicious 

OS can change the value of Batch Size to an extremely small/extremely large value or manipulate the 

Batch Timeout by decreasing it too much and therefore harm the throughput of the network [52]. 

▪ Malicious Validating Nodes and clients: validating nodes are responsible for validating the 

transactions according to the “Validating System Chaincode” and updating the ledger state. 

Therefore, malicious validating nodes could authorise double spends (i.e. Double spending attacks) 

and break the integrity of the ledger. Similarly, malicious clients can pollute the blockchain and 

increase dramatically its size by keeps sending a constant stream of invalid unendorsed transactions 

to the OS. Since the client has “write access” to the ledger, ordering nodes pack the invalid 

transactions into blocks and sends them to the validating nodes. Even though the validating nodes 

mark the transactions as invalid, they are still included in the blockchain [47]. 

DDoS (Distributed Denial of Service). Denial of Service (DoS) is a cyber-attack in which the attacker exploits 

the network connection to disrupt the normal traffic of a targeted service to make it unavailable for 

legitimate users. The attack can be launched with different methods such as sending repeated SYN message 

requests (i.e. “SYN flood”), or packets larger than the maximum byte allowance (i.e. “ping of death”) [50]. A 

single machine can be used to lunch automatically a DoS attack, However, if a DoS attack is launched from 

multiple machines, usually referred as zombies or bots, it is called a Distributed Denial of Service (DDoS) 

attack. Hyperledger Fabric network is inherently DDoS tolerant as is distributed and redundant. However, by 

centralizing the OS, Fabric becomes somewhat prone to DDoS attacks, especially with the consensus method 

Solo, which involves a single OS [47]. Further, the parties that can host nodes and/or transact on the 

blockchain network can be restricted to known identities rather than anonymous. Hence, the identity of an 

endorser is known to everyone in the network; this information makes DDoS attacks possible on selective 

endorsers to block certain client transactions for updating into ledger [48], degrading the overall network 

efficiency, or blocking the whole blockchain by stopping chaincode execution and/or the consensus network 

[51]. 

Wormhole attacks. In this attack, within a private network, an insider malicious peer creates a virtual private 

network (or channel) with the outside network and leaks the information of its own private network [48]. In 

Hyperledger network, an additional security layer (i.e. access control mechanism) is used by creating private 

channels between members of the network. Only peers inside the channel have access to the ledger of the 

channel and their identities are known to every other members of the channel. The used access control 

mechanism entirely depends on trusting every member inside the channel. Therefore, if a single peer 

member is compromised or become malicious and colludes with the outer adversary, wormhole attack is 

possible and can lead to leakage of confidential information of all members of the channel [48]. 

MitM & SSL Stripping attacks. In Hyperledger network, each peer has a client-side interface to receive input 

data and to enable clients to invoke transactions on the fabric, where transactions generally involve 

confidential data being passed as input. Insecure interfaces can lead to information leakage, especially by 
stripping away the encryption offered by HTTPS (called SSL Stripping). SSL Stripping is a serious cyber threat 

to Hyperledger network since their access control mechanism entirely depends on generating trust among 

mutually untrustworthy peers [47]. In this attack, once attackers gain access to the network, they can act as 

a Man-in-the-Middle (MitM) to intercept connections over the network and get data as plaintext. 
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Figure 5-2: SSL Striping attack [47] 

Figure 5-2 illustrates the working method of this attack, where the attacker intercepts the connection 

between the client and the server, behaves like server for the client and client for the server. Once the client 

sends an HTTPS (encrypted) request to the server asking for the certificate and supplies his certificate, the 
attacker intercepts this request and replaces the client certificate with his own and replace the HTTPS content 
in the server response with HTTP content signaling to the client that he will communicate over HTTP only. 

Thus, the client communicates the login information with the attacker in cleartext [53]. 

5.2 Threat’s mitigation 

In order to address the security risks mentioned above and address those attacks, a number of security 

measures are suggested to be considered by Cyber-Trust’s DLT in order to enhance the overall security of the 

deployed solution. 

5.2.1 Addressing the Insider Threat 

Insider threat can be avoided in the cyber-trust project if the privacy of the peers (clients, peers and ordering 

nodes) is preserved. This can be achieved by using a preventive model against internal attacks specific to 

Hyperledger Fabric, such as the privacy-preserving data aggregation scheme proposed in [57] for the Smart 

Grids against internal adversaries. It is also important to secure the Member Service of Hyperledger, which 

is one of the critical components that Hyperledger Fabric provides to support dynamic entity registration and 

identity management, as well as auditing [56]. This can be achieved by using modern Trusted Execution 

Environments (TEEs), such as Intel’s Software Guard Extensions (SGX) [55]. This promising technology has 

been used in [56] as an extra security feature in peer communications. With SGX remote attestation and 

isolated execution inside the CPU capabilities, each distributed node can be enrolled as a trusted entity and 

hence greatly reducing the attack surface. 

5.2.2 Addressing denial of service attacks 

To mitigate this issue to a certain degree in the Cyber trust project, the OS should use Crash Fault Tolerant 

(CFT) protocols such as Kafka (based on Zookeeper), Raft, etc. These protocols are in principle vulnerable to 

Byzantine nodes: one single malicious node can effectively prevent the network from reaching consensus 

[47]. Therefore, a preventive model against internal attacks specific to Hyperledger fabric should be 

implemented along with these protocols. Such a recommendation has also been made in Section 3, where 

Raft has been proposed as the consensus protocol of choice for CTB. 

Providing anonymity to endorsers can also prevent DdoS attacks against selective endorsers. For example, in 

[49] authors proposed an anonymity mechanism of endorsers using two different techniques: Anonymization 

of endorsers using pseudo identities and randomizing endorsers. This means that every user in the channel 

is equally probable to act as endorser for every new transaction. DdoS attacks resulting from manipulating 
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or stopping the Chaincode execution can be avoided by running the Chaincode on trusted execution 

environment such as SGX. This ensures that the chaincode does not deviate from its specification. 

5.2.3 Addressing wormhole attacks 

Wormhole attack is a new attack that applies to all major permissioned blockchain, including Hyperledger 

Fabric, and allows an attacker to steal information from honest peers in the same channel. Thus, a novel 

approach to secure the communications and preserve privacy within the channels is important. For example, 

work in [48] proposed to anonymize the senders and recipients of transactions inside a channel. Thus, the 

members of a channel can avail the benefits pertaining to that channel, but no member can view transaction 

communicated between two members within that channel. Group signature approach [54] is used to 

anonymize the actual identity of the sender, while the receiver is anonymized using the bilinear pairing-based 

cryptography [58]. This approach provides perfect unlinkability of public keys of users. While, on the other 

hand, the Backtracking approach (bitcoin) has been used to check the validity of a transaction. Those 

approaches seem to be contradicting to the strong accountability needed by Cyber-Trust’s DLT due to the 

need for integrity checking and storage of forensic evidence metadata, and hence need to further 

investigated. 

5.2.4 Addressing MitM & SSL stripping attacks 

SSL stripping attacks intercept and decrypt confidential information sent over the network. This attack is 

relatively easy to launch and amongst the most dangerous Man in the Middle (MitM) attacks. An SSL 

certificate alone cannot protect against this attack. Therefore, an intrusion detection system (IDS), like the 

one delivered in the context of the project, can be used to prevent this kind of attacks. IDS will basically 

follow the network traffic closely. If an attacker tries to miss the traffic flow and intervene, IDS will prompt 

them instantly. Another solution to block all MitM attacks is to use a virtual private network (VPN). The use 

of such cryptographic tunnels creates additional secure layers when users access to the network over 

connections such as Wi-Fi [59]. A Strong client authentication approach can also prevent this kind of attacks 

like the multi-factor and multi-channel id authentication approach proposed by google [60]. 

5.3 Conclusions 

As mentioned above, one of the most challenging issues that should be taken into account in the Cyber-

Trust’s DLT are insider threats. All Cyber-Trust’s DLT nodes could be vulnerable to this threat, including the 

membership service provider (MSP) admins, ordering nodes, validating nodes and clients, which can cause 

great damage to Cyber-Trust’s DLT network and lead to further attacks. Hence, the security of the Cyber-

Trust DLT peers should be preserved by using a proactive model against internal adversaries, with a secure 

identity management scheme as support, to ensure that the data sources are credible rather than spurious 

or illegal. In this context, pseudo identities could be used to anonymize the senders and recipients of 

transactions inside a channel, and therefore hid the transaction communicated between two members of 

this channel from all other members. This will help to reduce the insider threat attack surface and creates 

additional security layer against DdoS and Wormhole attacks. 
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6. Privacy analysis of Cyber-Trust blockchain 

In this section, we focus on privacy risks arising by the usage of the Hyperledger Fabric, towards presenting 

the appropriate mitigating measures that have been adopted in the Cyber-Trust system. 

6.1 Privacy risks in blockchain applications 

Despite the obvious advantages of the blockchain technologies, privacy issues are still a major challenge to 

be addressed, currently being an active research area. Such issues are mostly present in public blockchains, 

since in such a case citizens and companies are still wary to adopt such technologies, due to the publicity of 

their data/transactions [38]. However, even in private blockchains – which is the case of Cyber-Trust system 

– there exist privacy challenges, despite the fact that, obviously, the non-publicity of the ledger alleviates 

some issues by default. Several general privacy concerns, in relation with the relevant provisions of the 

General Data Protection Regulation (GDPR), are being stressed in D7.1 [67] and D7.2 [68] (although these 

deliverables cover the whole Cyber-Trust project, personal data protection aspects in the context of 

blockchain are also being considered therein). 

In general, main privacy challenges in blockchain scenarios (of any form), can be summarized as follows (see 

also [39]): 

i) Transaction linkability. This is the case in which data (“transactions” in the context of the blockchain) 
corresponding to one user can be linked, thus allowing development of a profiling of the user 

according to her/his data. For instance, this is an obvious threat in a public blockchain, in which the 

user corresponds to a unique address, which in turn constitutes somehow a pseudonym of the user21. 

Note that, in general, the purpose of the personal data process occurring within the context of the 

blockchain should be taken into account in order to evaluate such a privacy threat. In the case of the 

Cyber-Trust framework, the relevant blockchain serves as vehicle to provide integrity and ownerships 

of requests between LEAs and ISPs when the first are asking to access forensic evidence – and, to this 

goal, metadata of these evidence are also placed in the blockchain (see D7.5). Therefore, some 

“transaction linkability” shall be allowed; for example, a complete backlog of communication is 

needed, to establish a chain of custody. Therefore, in the Cyber-Trust system, the transaction 

linkability privacy threat rests with the aim to ensure that only legitimate “users” (stakeholders) have 

access to these data that can be linked, and such an access should be confined to the absolutely 

necessary data with respect to the desired purpose (which in turn needs to be fully transparent); no 

further processing in a manner that is incompatible with these purposes should be allowed22. 

ii) Private keys management. Private keys are being used to sign each “transaction” in the blockchain 
and, thus, they constitute an important primitive for both security and privacy. Compromisation of 

private keys results in identity thefts, as well as in privacy issues. 

iii) “Malicious” smart contracts. There is also a privacy challenge concerning the smart contracts that 

are able to access the data in order to process transactions. There is possibility that a smart contract 

might be able, either deliberately (due to a malicious programmer) or not, to leak information on 

what is being processed. In this way, privacy might be breached [40]. Such an example is being 

 
21 It is well-known in the literature that, even if the pseudonym do not allow by itself a re-identification of a user, it is 

still being considered as personal data since, under specific circumstances, it may allow identification (e.g. if the user 

provides additional information to verify that she/he is the owner of the pseudonym – see also D3.1 [65]). Moreover, 

linkage of information (“transactions”), corresponding to a single user, that is being available in the blockchain could 
also give rise to identification of a user or deriving conclusions for her/him far beyond the purpose of the processing 

(see also D7.1). 
22 See also the data protection principles of lawfulness, fairness and transparency of the purpose of the process (Art. 

5(1) of the GDPR), as well as the purpose limitation principle (Art. 5(2) of the GDPR) – see also D3.1 [65]. 
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described in a simple scenario of an “odds and evens” game between two players being described in 

[41], where it is shown that an adversary can carry on an attack which always allows him to win the 

game. 

iv) Non-erasable data. Due to the inherent immutability property of blockchains, data that have been 

put into a blockchain cannot be deleted (and they remain always available to any user/stakeholder 

having access to the blockchain). This clearly gives rise to privacy issues, which are strongly related 

to the so-called right to erasure (or right to be forgotten) that is provisioned in the GDPR. 

v) Privacy interoperability across different blockchain-enabled scenarios. As it is described in [38], a 

blockchain can be applied in different kind of scenarios, which demand diverse privacy requirements. 

Therefore, it is essential to have a fragmentation so as to ensure that diverse blockchain 

implementations that are not interoperable need to be in place. 

Note also that loss of data confidentiality (i.e. unauthorized access to individual’s personal data) is also a 

privacy issue, but we refrain from explicitly stated it since such a risk has been already addressed above in 

the security context. 

It should be stressed that several privacy enhancing techniques, based on advanced cryptographic primitives, 

are known for alleviating privacy challenges in blockchains; such possible solutions have been analyzed in 

D7.1 [67]. However, as recently stated in [38], the performance of such privacy enhancing technologies is still 

an issue that needs to be handled. Moreover, the authors in [38] explicitly state, as privacy challenge, the 

case that a blockchain is being used in an IoT scenario to provide several services (such a case is actually the 

Cyber-Trust system): the authors claim that, due to the limited capabilities of the devices, they might have 

difficulties to accomplish certain blockchain-related operations – and they actually classify this as a distinct 

privacy challenge by itself. 

6.2 Privacy mechanisms of Hyperledger Fabric 

The Hyperledger traffic supports two important privacy mechanisms. The first one rests with the so-called 

channels concept, which allows to separate the information between different channels [42]. The second 

one is the concept of the private data, which allows to isolate data between different organizations within 

the same channel [39]. The channels are associated with the network level, whereas the private data are 

associated with the chaincode (application) level. Such privacy mechanisms are very important in cases of 

providing blockchain network and applications into a consortium environment (where consortium is a 

number of organizations\parties with common business goals); this is actually the case of the Cyber-Trust 

system. 

6.2.1 Channel 

Channel is an important concept in Hyperledger Fabric. It is associated with a set of organizations sharing 

business goals and maintaining a same and consistent data store. As defined in [42], a channel is a state 

partition of the full system that (a) is autonomously managed by a set of peers (but it is still aware of the 

bigger system it belongs) and (b) optionally, hides the internal state from the rest of the system. The latter 

feature actually, when enabled, is crucial in terms of privacy. 

A Channel is identified by a unique ID. After a peer joins a channel, a ledger is created and is running on the 

peer. When a peer joins more than one channel, these ledgers are running independently. This is shown in 

next Figure 6-1 [43]. By these means, a channel provides a mechanism to limit both applications and data to 

a specific set of entities. 
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Figure 6-1: A scenario of two channels in a business network [43] 

At application level, the chaincode is deployed at channel level. In case that a peer joins more than one 

channel, the correct ledger (uniquely identified by its ID) is accessed each time. It should be pointed out, as 

stated in [43] that we can deploy one or more chaincodes at channel level. In other words, there is flexibility 

in developing chaincode and application specific to a channel – whereas, of course, we still can deploy the 

same chaincode on different channels. 

6.2.2 Private Data 

Private Data provides privacy from a different perspective. More precisely, Private Data allow, for a specified 

set of organizations, that a subset of them keeps the actual data, while the remaining keep only a proof of 

such data, but not the actual data. This can be performed within a same channel – in other words, isolation 

of data occurs within a same channel [39]. 

The main benefit of Private Data occurs in the case that that we need to isolate data, but there is no privacy 

need at chaincode or application level. In such a case, a strictly channel approach will not be efficient since 

we would have to construct a separate channel for every subgroup of peers – that is a separate ledger for 

each subgroup, with the same set of chaincode being instantiated for each of them (and things become more 

complex if another channel in case that a new subgroup of peers is necessitated, since a new channel needs 

In many cases, an enterprise may need to keep certain information private in a channel from other companies 

additional administrations, policies, membership accesses, and many more) [43]. 
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Figure 6-2: One channel with private data collection defined for org1 and org2 [43] 

In Private Data, one can deploy multiple collections inside a channel, each of them serving different business 

objectives for a subgroup of organizations. Clear gains occur in terms of scalability. The above are shown in 

Figure 6-2. 

 

6.2.2.1 Private Data Collection (PDC) 

In the Hyperledger Fabric, The PDC (private data collection) is the term referring to collection of peers 

organizations that are authorized to store private data on a channel [39]. The data stored includes: i) Private 

data, which are stored in the peer’s private database, ii) the hash value of the private data (see Figure 6-2). 

For private data, the peers on the channel use the hash value of the private data when sorting and writing 

the endorsement, as evidence of the existence of the transaction and for state validation and auditing. 

According to Hyperledger Fabric 2.0 documentation, PDC can be used when we need to keep only a portion 

of the ledger secret from a set of organizations. 

For private data, the information that is broadcasted between peers uses the gossip protocol. However, only 

the authorized organization can see this. There are no ordering services in this case, and they can’t see the 
private information. Anyhow, as the gossip protocols broadcast the information from one peer to another, 

Anchor nodes in the channel need to be in place (that is, according to the Hyperledger Fabric glossary, a peer 

node on a channel that all other peers can discover and communicate with. Each member (organization) on 

a channel has at least an anchor peer). 

There exist cases where a member of a PDC wants to share private data with other organizations – for 

example, if the member wants to transfer the asset to a third party. In such a scenario, the third party can 

calculate the hash of the private data and subsequently check that the hash value is consistent with the hash 

stored on the channel ledger, thus proving the existence of the transaction. 

Concluding, some organizations will have full access to the ledger, and others may only see what they are 

allowed to. In case that transactional data should remain hidden from the ordering services, usage of PDCs 

is a solution. 

An Example. Let’s check out an example from Hyperledger Fabric 2.0 documentation to understand the 

situation better23. Let us assume that, in a trading platform, there are five enterprises in a channel: 1) The 

 
23 This example is also available in https://101blockchains.com/hyperledger-fabric-2-0/ 

https://101blockchains.com/hyperledger-fabric-2-0/
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farmer who sells goods, 2) The Distributor who moves those goods, 3) The Shipper who moves goods 

between two parties, 4) The Wholesaler who buys goods from the Distributor, 5) The Retailer who buys the 

goods from the wholesalers and shippers. 

We assume that the Distributor can charge differently in every case. So, he might want to keep transactions 

with the Shipper and Farmer private because he may have other deals with the Retailer and the Wholesaler. 

Moreover, the Distributor does charge less to a Wholesaler than to a Retailer. Thus, he may want to keep 

that a secret from the Retailer. The Wholesaler, on the other hand, can also have private relations with the 

Shipper and the Retailer. 

A channel-based solution is an option, but creating a separate channel for every private information renders 

the system much complicated. Rather than doing that, we may have different PDCs for each of the members, 

as follows: 

I. Private-Data-Collection-1: Shipper, Farmer, and Distributor 

II. Private-Data-Collection-2: Shipper, Retailer, and Wholesaler 

III. Private-Data-Collection-3: Wholesaler and Distributor 

All the Distributor peers will have private databases containing private data for Shipper, Farmer, and 

Distributor relation and Wholesaler, and Distributor relation. 

According to Hyperledger Fabric 2.0 documentation, there are some enhancements that actually make it 

possible for the new private data patterns to work. 

First, the option of collection-Level Endorsement Policies is allowed. By default, endorsement policies are 

specified in the chaincode definition, which is agreed to by channel members and then committed to a 

channel (that is, one endorsement policy covers all of the state associated with a chaincode). For PDCs 

though, we can also specify an endorsement policy at the private data collection level, which would override 

the chaincode level endorsement policy for any keys in the private data collection, thereby further restricting 

which organizations can write to a private data collection. 

Moreover, in Fabric 2.0, one can use implicit organization-specific collections without any upfront definition. 

If we want to utilize the per-organization private data patterns, we don’t even have to define the PDCs when 
deploying chaincode; this is one of the major Hyperledger Fabric 2.0 features. 

6.2.3 Channels vs. PDCs 

As stated in [39], these two private mechanisms provide the following services: (1) New channels are needed 

when the entire transaction and ledger must be kept strictly confidential to the outside members of the 

channel, (2) when the transaction information and ledger need to be shared among some organizations, so 

as some of them need to be able to see all the transaction data and other organizations need to know the 

occurrence of this transaction to verify its authenticity, a private data collection (PDC) should be established. 

In addition, because private data is propagated through peer-to-peer rather than block, the privacy data 

collection is used when the transaction data must be confidential for the sorting service peer. 

6.3 Mitigation of privacy risks in Cyber-Trust blockchain 

In this section, privacy-enhancing measures in the Cyber-Trust DLT, to address the aforementioned privacy 

challenges, are being discussed. First, it should be explicitly stressed that the Cyber-Trust DLT is a 

permissioned private ledger (see also the relevant requirement explicitly stated in D3.3 [66]). Hence, by 

default, unauthorized users/peers cannot write or read the ledger. Only pre-determined legitimate entities 

(ISP providers/LEAs) are allowed to have such access – under appropriate safeguards as discussed below. 

Nobody else can have any access to the Cyber-Trust DLT. Therefore, privacy issues occurring explicitly in 
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public permissioned/permissionless ledgers (due to the fact that anybody can read and/or possibly write) are 

out of the question in our case. 

In addition, information on suspicious network traffic or potential malicious activity (which will be used in 

the subsequent evidence analysis) is being stored only in the off-chain database, and not in the DLT. Only 

logging information of any such activity, so as to provide a proof-of-existence service, will be stored in the 

DLT. Therefore, having access only to the DLT and not to the – securely stored – off-chain database, does not 

allow identification of network/device communication data (which are being considered as personal data). 

We subsequently analyze the main privacy challenges described in Section 6.1: 

1) Transaction linkability. This risk, as stated above, is related with the possibility of linking/combining 

information corresponding to an individual, so as to create a profile of her\him (which could possibly be 

used for other purposes, without informing the user). 

In the Cyber-Trust scenario, we define three confidentiality levels (see also D7.5): 

i) The public information which is available to any partner of the Cyber-Trust system, related with 

trusted file storage (i.e. info on patches that need to be installed, their valid/genuine sources etc.) 

This information does not contain personal data and, thus, no privacy risks occur. 

ii) Private information that can’t be shared between partners. It corresponds to the data responsible of 

the ownership management – i.e. information on who owns which device, produced by which 

company as well as its internet provider. This information determines if the request for modification 

on a device by another person than the owner of the device can be executed based on the 

authorization level of the requester. This information is generated by the Cyber-Trust administrative 

service [ref to D4.1, D4.5] and is not accessible by any other entity. 

iii) Private information that can be shared between partners. It concerns metadata referring to forensic 

evidence and other information useful to LEAs during criminal proceedings. At their creation, 

metadata is private and only visible to the creator of the data. Moreover, private information stores 

the communications between two partners; such a storage serves as a complete backlog of the 

communications (.txt and .pdf files). 

For both cases ii and iii, the PDC feature of Hyperledger Fabric (see Section 6.2.2.1) is being utilized 

so as to render data private (case ii) or available only to a specific set of stakeholders upon request 

(case iii). Regarding the evidence data, we recall that the DLT stores only metadata, which are useless 

(meaningless) without the relevant off-chain data. Such access to off-chain data, in conjunction with 

the access to the corresponding on-chain metadata, will be provided only after a successful LEA’s 
request, under the fulfillment of all the relevant legal requirements per jurisdiction. Regarding the 

communications between partners, such data will accessible only if there is need to check the history 

of communications and such need is absolutely necessary and fully justified (i.e. for establishing a 

chain of custody, so as to verify all previous communications between organizations/partners). In 

such a scenario, access will be restrictively given to the parties that should be allowed to get this 

information (and this granting of access is also recorded to the DLT, for further strengthening the 

transparency). 

Therefore, from the above it becomes evident that the transaction linkability as a privacy risk does 

not hold in the Cyber-Trust DLT. The DLT by itself does not contain any personal data (e.g. 

personal/device identifiers etc.) that could allow the extraction of profiling of an individual24. 

 
24 We should recall that the aim of the Cyber-Trust system is to provide security to individuals and, to this end, 

monitoring of suspicious network activities and verifying the patching of the device are in place. Although these pieces 

of information could be considered as “profile generation”, this process lies exactly in the legitimate purpose of the 

system and is fully transparent to the user who provides her/his free consent for this. Therefore, this process should 

not be considered as a privacy issue. 



 

D7.4 CYBER-TRUST blockchain security analysis (I) 

 

Copyright  Cyber-Trust Consortium. All rights reserved. 46 

2. Private keys management. Public key cryptography is being used in the Cyber-Trust DLT for digital signing 

the data that are being stored. More precisely, a Membership Service Provider (MSP) is responsible for 

maintaining the identity of all the participants in the system. It issues credentials in the form of 

cryptographic certificates which are used for the purpose of authentication and authorization. Fabric CA 

(Certification Authority) acts as a private root CA provider capable of generating keys and certificates. For 

example, the logger utilizes a digital signature algorithm to sign the metadata of the evidence information 

that are stored in the DLT; to achieve this, a digital certificate is being used, used by the certificate 

authority (CA) of HyperLedger Fabric, which is under the sole control, in our case, of the Cyber-Trust 

system. By these means, only legitimate users (i.e. users with valid certificates, issued by the Cyber-trust 

system) may interact (“write”) to the DLT. Each user uses his own private key to transact. 

Note that in the Hyperledger Fabric, as also stated above (see also previous deliverables – e.g. D7.2 [68]), 

endorsers have a crucial role. A user (client) proposes a transaction to endorsing peers who in turn 

simulate the transaction and validate with the smart contract available. This endorsement is called 

execution. Once the execution is done at the endorsing peers the response would be sent back to the 

client with endorsement signatures (in case of private data, the endorser disseminates them to the 

authorized peer via the gossip protocol). Since endorsers are under the full control of the Cyber-Trust 

system, their signatures cannot be forged. 

A crucial issue though is how to protect the private keys of users outside the Cyber-Trust system (i.e. 

peers such as at LEAs). First, it should be noted that private keys are not being stored in any database. 

Moreover, it should be pointed out that as in any PKI-based system, customers are responsible for the 

storage, backup, and disaster recovery of all their keys. This will be explicitly clarified to any 

client/organization that receives a digital certificate. Moreover, the Cyber-Trust system will have in place 

a mechanism for certificate revocation and suspension, in case that something “strange” in the incoming 

transactions is being detected. Besides, the nature of the data that is being stored in the Cyber-Trust DLT 

allows an early identification of any such malicious request\transaction. In the unexpected scenario that 

a malicious transaction has managed to be put into the DLT, due to a stolen private key of a client, 

additional appropriate information will be subsequently put to the ledger so as to render all malicious 

transactions as fake. 

3. “Malicious” smart contracts. The execute-order paradigm of Hyperledger Fabric separates the 

transaction flow (that might be executed by different nodes of the system) into the next steps. Firstly, in 

the execution phase, the execution of the transactions is taking place by checking their accuracy by a 

subset of the network, called endorsers. Then, in the ordering phase, the ordering 

service nodes (OSN) order all the transactions including the signatures of the endorsing peers. Last, in 

the validation phase the transactions are validated to prevent race conditions events. 

Smart contracts (also called as chaincode in the Hyperledger context) are computer programs that 

contain logic to execute transactions and modify the state of the assets stored within the ledger. 

Chaincode runs in a secured Docker container isolated from the endorsing peer process. Chaincode 

initializes and manages the ledger state through transactions submitted by applications. 

In the Cyber-Trust system, we used the Go language to create chaincode. Due to their importance, 

chaincode has been meticulously developed and tested (see D7.3). Tests illustrated that it responds 

correctly to any case that we could imagine, where there is no any privacy breach. 

4. Non-erasable data. As also stated above, this issue is still a great challenge in the blockchain research 

community, as well as a debate topic in a public discussion. First note that it may be possible that the 

right to erase personal data (i.e. the right to be forgotten – see also D3.1 [65] and D3.3 [66]) may not be 

applicable in some cases; for example, the Directive Directive (EU) 2016/680 of the European Parliament 

and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of 

personal data by competent authorities for the purposes of the prevention, investigation, detection or 

prosecution of criminal offences or execution of criminal penalties, states that (see art. 16) 
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“Member States shall provide for the controller to inform the data subject in writing of any refusal 

of rectification or erasure of personal data (…) and the reasons for the refusal. Member States 
may adopt legislative measures restricting, wholly or partly, the obligation to provide such 

information to the extent that such a restriction constitutes a necessary and proportionate 

measure in a democratic society with due regard for the fundamental rights and legitimate 

interests of the natural person concerned (…)”. 

This has been also highlighted in D7.5, which states that the data subjects’ rights with respect to personal 
data contained in a judicial decision or record or case file may be carried out in accordance with national 

law, which may differ from state to state. 

In any case though, since there exist cases in which the right to personal data erasure will be applicable, 

the adopted approach in the Cyber-Trust system proceeds up to the greatest extent, given the inherent 

immutability of the ledger. More precisely, we may recall that evidence data (which are of the highest 

importance in terms of privacy) are not being stored in the DLT but in an off-chain database. Hence, 

deletion from this database is feasible. The DLT will contain only the metadata (hashed value etc.) which 

are practically irreversible and meaningless. In addition, for any such deletion, the authorized entity will 

create a new transaction, indicating that these old meaningless metadata correspond to evidence that 

has been deleted. In general, this will be the case for any deletion of data in the blockchain. 

As a concluding remark on the data erasure in blockchains in general (including the case of Cyber-Trust), 

we refer to [44] stating that, from a legal point of view, and taking into account the technical limitations, 

there exist 

“indications that the obligation inherent to Article 17 GDPR (i.e. right to erasure) does not have 

to be interpreted as requiring the outright destruction of data. In Google Spain, the delisting of 

information from research results was considered to amount to erasure (…) This may be taken 
as an indication that what the GDPR requires is that the obligation resting on data controllers is 

to do all they can to secure a result as close as possible to the destruction of their data within 

the limits of their own factual possibilities.”. 

5. Privacy interoperability across different blockchain-enabled scenarios. This is the case in which the 

concepts of channels and private data supported by the Hyperledger Fabric (see Section 6.2) are quite 

beneficial. By appropriately choosing each time the number of channels, the organizations that will have 

access to each channel, as well as the PDCs inside each channel (with appropriate owners), all possible 

scenarios can be fully adequately handled, without posing privacy at risk. 

6.4 Conclusions on privacy risks – Next research steps 

The above analysis indicates that appropriate safeguards are in place to mitigate privacy risks in the context 

of the Cyber-Trust blockchain. To this end, we next recall the basic privacy requirements stated in D3.3 [66], 

in order to reveal that they have been addressed. 

▪ Only authorized entities have access to the metadata stored in the DLT, the visualization tool and the 

off-chain database where the actual material is kept. 

▪ The actual personal data (regarding network/device activities) are being stored in an off-chain 

database and not in the DLT; The DLT stores hashed values, which point to actual data stored on the 

off-chain conventional database. 

▪ The data stored on the DLT and the off-chain database are safeguarded against internal or external 

security threats. 

▪ The CTB and the off-chain solution accompanying it should follow the common principles with 

regards to the storage of electronic evidence, as described in D3.2. 
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▪ A private and permissioned solution for the DLT is being used. 

▪ The status of the participants in the DLT will be clarified well in advance. 

Research in this field is still ongoing. Some other possible approaches that could be appropriately adopted in 

the (near) future are the following: 

a) Usage of appropriate Hardware Security Modules to manage private keys may further enhance the 

protection of the private keys of the organizations/entities that interact with the Cyber-Trust DLT25. 

b) Zero-knowledge proofs (ZKPs) constitute an important cryptographic primitive for enhancing privacy, 

including the blockchain applications (see e.g. D7.1 [67]). In the context of the Hyperledger Fabric, 

two privacy aspects will be achieved using ZKPs: Anonymous client authentication with Identity 

Mixer, and privacy-preserving exchange of assets with Zero-Knowledge Asset Transfer (ZKAT) [45]. 

i. Identity Mixer leverages ZKP to offer anonymous authentication for clients in their 

transactions. ZKP protocols may have important role in case that the actual identity of the 

client – and possibly any attributes associated with – should remain secret from the rest of 

network entities, such as its peers. For example, this would be important in cases that these 

entities wish to verify that the creator of a transaction is a member of a particular 

organization (known as a “membership proof”), or that it is in possession of a specific set of 

attributes (known as “selective disclosure of attributes”) but not the exact identity. In both 

cases, the protocols guarantee that nothing is revealed about the client’s identity. 

ii. The Hyperledger Fabric community puts efforts on the use of ZKP to accommodate privacy-

preserving asset management with audit support (also known as Zero-Knowledge Asset 

Transfer, or ZKAT). By this feature, clients (transactors) will allow to issue assets and request 

transfer of their assets without revealing anything to the ledger for the assets being 

exchanged beyond the fact that the transfer complies with the asset management rules. 

ZKAT is built on top of anonymous authentication mechanisms offered by Identity Mixer. 

Although it is not yet obvious that, in the Cyber-trust system, such privacy features are 

desirable (since transparency in the context of the desired security services is essential), 

further considerations of ZKPs should be investigated. 

c) A promising technology to efficiently implement the “right to erasure” in blockchains is the so-called 

notion of redactable blockchains (see, e.g., [46]). Such blockchains are able to remove data or to re-

write data. The main way to achieve this is the usage of the so-called chameleon hash functions, that 

is hash functions for which a collision can be found given a secret trapdoor information. Hence, this 

may be the right path to implement the right to erasure in practice (this is also mentioned, as a 

research alternative that needs to be further taken into account, in [44]). 

d) Implementing post-quantum digital signatures in a blockchain is also a very important future 

research task. This issue – and possible relevant technologies – has been widely discussed in D7.1 

[67]. At the moment, the Hyperledger Fabric as a technology does not support post-quantum 

signatures. 

 

 
25 Similarly to the approach described in https://cloud.ibm.com/docs/blockchain?topic=blockchain-ibp-security#ibp-

security-ibp-keys 

https://cloud.ibm.com/docs/blockchain?topic=blockchain-ibp-security#ibp-security-ibp-keys
https://cloud.ibm.com/docs/blockchain?topic=blockchain-ibp-security#ibp-security-ibp-keys
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7. Conclusions 

The security threats of Cyber-Trust’s DLT solution are analyzed by the present deliverable are classified into 
a number of areas: (a) consensus security; (b) smart contract security; (c) software and network security; and 

(d) privacy aspects. A summarization of the key findings is provided below. 

Consensus security. Since the implementation of the CTB consensus protocol is among the most important 

components of a DLT solution, the combination of Fabric with a CFT protocol (and in particular Raft) is 

considered to be ideal for Cyber-Trust’s permissioned blockchain environment optimally balancing between 
security and the required performance. Future extensions might consider BFT protocols, like BFT-SMaRt, 

once they are adopted by the Hyperledger project. 

Smart contract security. A number of measures have already been implemented to harden CTB solution as 

mentioned in Section 4.2; however, a recent trend in analyzing smart contracts’ security has been identified 

that is based on formalization techniques, like symbolic execution, formal modelling, model checking, etc., 

which could also be used to properly analyze other properties such as scalability, performance, and privacy. 

This approach seems to be quite promising and could be examined as future research work. 

Software and network security. Representative attacks were considered against the CTB solution, namely 

insider threats, (distributed) denial of service attacks, wormhole attacks, man-in-the-middle attacks, and SSL 

stripping attacks. In general, proactive solutions having been chosen, such as the use of BFT/CFT protocols in 

CTB (see above), have been identified as a possible mitigation to insider threats and misbehaving nodes. An 

alternative/complementary option would be to employ a trusted execution environment, such as Intel’s SGX, 

to address insider threats and also DDoS attacks resulting from the manipulation or stopping of the chaincode 

execution. This is an interesting direction that could be explored in a future research project. Techniques to 

mitigate wormhole attacks vary from those relying on the anonymization of the senders and recipients in the 

transactions inside channels, to those employing group signatures. Due to the need for accountability in CTB, 

such solutions need to be further assessed possibly along with privacy solutions (like ZKAT). Finally, an IDS 

solution, combined with strict policies in certificate management, are found to be sufficient for detecting 

MitM and SSL stripping attacks against the project’s DLT solution. 

Privacy aspects. Appropriate safeguards implementing the basic privacy requirements, stated in D3.3 [66], 

are already in place to mitigate privacy risks in the context of CTB. As research in this field is rapidly evolving, 

other promising approaches have been identified that could be adopted in a (near) future research effort. 

These span the use of hardware security modules (e.g. those having also been identified above to mitigate 

other threats), the employment of ZKPs in the context of the Hyperledger Fabric to achieve anonymous client 

authentication with identity mixer, and privacy-preserving exchange of assets with ZKAT, and the exploration 

of a new promising technology, referred to as redactable blockchains, to efficiently implement the “right to 
erasure” in CTB, and finally the adoption of post-quantum digital signatures (to be further investigated in a 

forthcoming deliverable). 
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